15.某三棱錐的三視圖如圖,該三棱錐的表面積是( 。
A.2B.$\sqrt{2}$+1C.$\sqrt{2}+\sqrt{3}$+3D.$\sqrt{3}$+3

分析 由已知中的三視圖,可知該幾何體是一個以俯視圖為底面的三棱錐,求出各個面的面積,相加可得答案.

解答 解:由已知中的三視圖,可知該幾何體的直面圖如下所示:

由主視圖知CD⊥平面ABC,設AC中點為E,則BE⊥AC,且AE=CE=1;
由主視圖知CD=2,由左視圖知BE=1,
在Rt△BCE中,BC=$\sqrt{2}$,
在Rt△BCD中,BD=$\sqrt{6}$,
在Rt△ACD中,AD=2$\sqrt{2}$.
故棱錐的四個面均為直角三角形,
故三棱錐的表面積S=$\frac{1}{2}$(2×1+2×2+2×$\sqrt{2}$+$\sqrt{2}$×$\sqrt{6}$)=3+$\sqrt{2}$+$\sqrt{3}$,
故選C.

點評 本題考查的知識點是由三視圖求體積和表面積,解決本題的關鍵是得到該幾何體的形狀.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)y=2sinxcosx的最小值-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\sqrt{x}$+6,則f(f(9))=9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.設向量$\overrightarrow{m}$=(sinωx,cosωx),$\overrightarrow{n}$=(cosφ,sinφ),(x∈R,|φ|<$\frac{π}{2}$,ω>0),函數(shù)f(x)=$\overrightarrow{m}•\overrightarrow{n}$的圖象在y軸右側的第一個最高點(即函數(shù)取得最大值的一個點)為P($\frac{π}{6},1$),在原點右側與x軸的第一個交點為Q($\frac{5π}{12},0$)
(1)求函數(shù)f(x)的解析式;
(2)在△ABC中,角A,B,C的對應邊分別是a,b,c若f(C)=-1,$\overrightarrow{CA}•\overrightarrow{CB}=-\frac{3}{2}$,且a+b=2$\sqrt{3}$,求邊長c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.若$\frac{1}{a}<\frac{1}<0$,則下列不等式:①a<b; ②|a|>|b|;③a+b<ab;④$\frac{a}+\frac{a}>2$中,正確的不等式有(  )
A.①②B.①④C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知f(x)=log${\;}_{\frac{1}{2}}$$\frac{x+1}{x-1}$,若對于區(qū)間[3,4]上的每一個x的值,不等式f(x)>($\frac{1}{2}$)x+m恒成立,則實數(shù)m的取值范圍是(-∞,-$\frac{9}{8}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.設A=(x1,y1,z1),B=(x2,y2,z2),則$\overrightarrow{AB}$=(x2-x1,y2-y1,z2-z1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.已知復數(shù)z滿足zi+5i=2z(i為虛數(shù)單位),則復數(shù)z的實部是-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若函數(shù)f(x)=a|x-2|(a>0,a≠1),滿足f(1)=$\frac{1}{9}$,則f(x)的單調遞減區(qū)間是( 。
A.(-∞,2]B.[2,+∞)C.[-2,+∞)D.(-∞,-2]

查看答案和解析>>

同步練習冊答案