【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)當(dāng)時(shí), 恒成立,求的取值范圍;
(3)求證:當(dāng)時(shí), .
【答案】(1)的單調(diào)遞減區(qū)間為; 的單調(diào)遞增區(qū)間為;(2);(3)見(jiàn)解析.
【解析】【試題分析】(1)直接對(duì)函數(shù)求導(dǎo)得,借助導(dǎo)函數(shù)值的符號(hào)與函數(shù)單調(diào)性之間的關(guān)系求出其單調(diào)區(qū)間;(2)先將不等式中參數(shù)分離分離出來(lái)可得: ,再構(gòu)造函數(shù), ,求導(dǎo)得,借助,推得,從而在上單調(diào)遞減, ,進(jìn)而求得;(3)先將不等式等價(jià)轉(zhuǎn)化為,再構(gòu)造函數(shù),求導(dǎo)可得,由(2)知時(shí), 恒成立,所以,即恒成立,故在上單調(diào)遞增,所以,因此時(shí),有:
解:(1))當(dāng)時(shí),則,令得,所以有
即時(shí), 的單調(diào)遞減區(qū)間為; 的單調(diào)遞增區(qū)間為.
(2)由,分離參數(shù)可得: ,
設(shè), ,
∴,又∵,
∴,則在上單調(diào)遞減,
∴,∴
即的取值范圍為.
(3)證明: 等價(jià)于
設(shè),
∴,由(2)知時(shí), 恒成立,
所以,
∴恒成立
∴在上單調(diào)遞增,
∴,因此時(shí),有.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某大學(xué)聯(lián)盟的自主招生考試中,報(bào)考文史專(zhuān)業(yè)的考生參加了人文基礎(chǔ)學(xué)科考試科目“語(yǔ)文”和“數(shù)學(xué)”的考試.某考場(chǎng)考生的兩科考試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如下圖所示,本次考試中成績(jī)?cè)?/span>內(nèi)的記為,其中“語(yǔ)文”科目成績(jī)?cè)?/span>內(nèi)的考生有10人.
(1)求該考場(chǎng)考生數(shù)學(xué)科目成績(jī)?yōu)?/span>的人數(shù);
(2)已知參加本考場(chǎng)測(cè)試的考生中,恰有2人的兩科成績(jī)均為.在至少一科成績(jī)?yōu)?/span>的考生中,隨機(jī)抽取2人進(jìn)行訪談,求這2人的兩科成績(jī)均為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中, 平面分別為和的中點(diǎn), 是邊長(zhǎng)為的正三角形, .
(1)證明: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)= (a,b為常數(shù))是定義在(﹣1,1)上的奇函數(shù),且f( )=
(1)求函數(shù)f(x)的解析式;
(2)用定義證明f(x)在(﹣1,1)上是增函數(shù)并求值域;
(3)求不等式f(2t﹣1)+f(t)<0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a=log36,a=log510,a=log714,則( )
A.a>b>c
B.a>c>b
C.c>a>b
D.c>b>a
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線(為參數(shù), ),其中,在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.
(Ⅰ)求與交點(diǎn)的直角坐標(biāo)系;
(Ⅱ)若與相交于點(diǎn),與相交于點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,設(shè)橢圓的焦點(diǎn)為,過(guò)右焦點(diǎn)的直線與橢圓相交于兩點(diǎn),若的周長(zhǎng)為短軸長(zhǎng)的倍.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)的斜率為,在橢圓上是否存在一點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)的直線與中心在原點(diǎn),焦點(diǎn)在軸上且離心率為的橢圓相交于、兩點(diǎn),直線過(guò)線段的中點(diǎn),同時(shí)橢圓上存在一點(diǎn)與右焦點(diǎn)關(guān)于直線對(duì)稱(chēng).
(1)求直線的方程;
(2)求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)有兩個(gè)相異零點(diǎn), ,求證: .(其中e為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com