16.在甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表.已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為$\frac{2}{7}$.
優(yōu)秀非優(yōu)秀總計(jì)
甲班10
乙班30
合計(jì)
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可能性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?
P(K2≥x00.500.400.250.150.100.050.0250.0100.0050.001
x00.4550.7081.3232.0722.0763.8415.0246.6357.87910.828
參考公式及數(shù)據(jù):K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

分析 (1)利用優(yōu)秀率求得優(yōu)秀人數(shù),根據(jù)列聯(lián)表各數(shù)據(jù)之間的關(guān)系求出未知空的數(shù)據(jù);
(2)根據(jù)公式計(jì)算相關(guān)指數(shù)K2的觀測(cè)值,比較臨界值的大小,可判斷成績(jī)與班級(jí)有關(guān)系的可靠性程度.

解答 解:(1)優(yōu)秀人數(shù)為105×$\frac{2}{7}$=30,∴乙班優(yōu)秀人數(shù)為20,甲班非優(yōu)秀人數(shù)為45.
故列聯(lián)表如下:

優(yōu)秀非優(yōu)秀總計(jì)
甲班104555
乙班203050
合計(jì)3075105
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),$k=\frac{{105×{{(10×30-20×45)}^2}}}{55×50×30×75}≈6.109>3.841$
所以若按95%的可能性要求,可以認(rèn)為“成績(jī)與班級(jí)有關(guān)系”

點(diǎn)評(píng) 本題考查了列聯(lián)表及利用列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn)的思想方法,熟練掌握獨(dú)立性檢驗(yàn)的思想方法是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.(1)試判斷函數(shù)f(x)=$\frac{1}{2}$+$\frac{1}{{2}^{x}-1}$的奇偶性.
(2)已知關(guān)于x的函數(shù)g(x)=log${\;}_{\frac{1}{2}}$(x2-ax+3a),其中a是實(shí)常數(shù).若g(x)在區(qū)間[2,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知A(1,1),B(2,4),則直線AB的斜率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.向平靜的水面扔下一顆石子,水波以50cm/s的速度向外擴(kuò)張,當(dāng)半徑為300cm時(shí),圓面積的膨脹率為30000πcm2/s.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x(a-lnx)-1(a∈R).
(1)若a=2,求函數(shù)f(x)在(1,e2)上的零點(diǎn)個(gè)數(shù)(e為自然對(duì)數(shù)的底數(shù));
(2)若f(x)在區(qū)間(1,e2)上是單調(diào)函數(shù),求a的取值集合;
(3)若f(x)有兩零點(diǎn)x1,x2(x1<x2),求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.“x≠1或y≠3”是“x+y≠4”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ax•ex在x=0處的切線的斜率為1.
(1)求a的值;
 (2)求f(x)在[0,2]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函數(shù)g(x)=b-f(2-x),其中b∈R,若函數(shù)y=g(x)恰有3個(gè)零點(diǎn),則b的取值范圍是(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列 {an} 的前n項(xiàng)和是Sn且2Sn=2-an
(Ⅰ)求數(shù)列{an} 的通項(xiàng)公式;
(Ⅱ)記bn=n•an,求數(shù)列{bn} 的前n項(xiàng)的和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案