10.在直角坐標(biāo)系xOy中,點(diǎn)A(0,3),直線l:y=2x-4,設(shè)圓C的半徑為1,圓心在l上,若圓C上存在唯一一點(diǎn)M,使|MA|=2|MO|,則圓心C的非零橫坐標(biāo)是$\frac{12}{5}$.

分析 設(shè)M(x,y),由MA=2MO,利用兩點(diǎn)間的距離公式列出關(guān)系式,整理后得到點(diǎn)M的軌跡為以(0,-1)為圓心,2為半徑的圓,可記為圓D,由M在圓C上,得到圓C與圓D相切,根據(jù)兩圓的半徑長(zhǎng),能求出結(jié)果.

解答 解:設(shè)點(diǎn)M(x,y),由MA=2MO,知:$\sqrt{{x}^{2}+(y-3)^{2}}$=2$\sqrt{{x}^{2}+{y}^{2}}$,
化簡(jiǎn)得:x2+(y+1)2=4,
∴點(diǎn)M的軌跡為以(0,-1)為圓心,2為半徑的圓,可記為圓D,
又∵點(diǎn)M在圓C上,圓C上存在唯一一點(diǎn)M,使|MA|=2|MO|,
∴圓C與圓D相切,
∴|CD|=1或CD=3,
∵|CD|=$\sqrt{{a}^{2}+(2a-3)^{2}}$,∴解得a=0或a=$\frac{12}{5}$.
∴圓心C的非零橫坐標(biāo)是$\frac{12}{5}$.
故答案為:$\frac{12}{5}$.

點(diǎn)評(píng) 此題考查了圓的切線方程,點(diǎn)到直線的距離公式,以及圓與圓的位置關(guān)系的判定,涉及的知識(shí)有:兩直線的交點(diǎn)坐標(biāo),直線的點(diǎn)斜式方程,兩點(diǎn)間的距離公式,圓的標(biāo)準(zhǔn)方程,是一道綜合性較強(qiáng)的試題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)f(x)是定義在R上的奇函數(shù),且f(2-x)=f(x),當(dāng)-1≤x<0時(shí),f(x)=log2(-3x+1),則f(2017)的值為( 。
A.-1B.-2C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.底面為正方形且側(cè)棱與底面垂直的四棱柱與圓錐的組合體的三視圖,如圖所示,則該組合體的體積為( 。
A.$\frac{π}{3}$+2B.$\frac{π}{3}$+$\frac{2}{3}$C.π$+\frac{2}{3}$D.π+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知數(shù)列{an}為等比數(shù)列,且a3+a5=π,則a4(a2+2a4+a6)=π2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.設(shè)函數(shù)f(x)=log2x,在區(qū)間(0,5)上隨機(jī)取一個(gè)數(shù)x,則f(x)<2的概率為(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知圓O:x2+y2=4與直線y=x交于點(diǎn)A,B,直線y=$\sqrt{3}$x+m(m>0)與圓O相切于點(diǎn)P,則△PAB的面積為( 。
A.$\sqrt{3}$+1B.$\sqrt{6}$+$\sqrt{2}$C.$\sqrt{6}$+2D.$\sqrt{3}+$$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知圓x2+y2+2x-2y-6=0截直線x+y+a=0所得弦的長(zhǎng)度為4,則實(shí)數(shù)a的值是±2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+x,x≥0}\\{x-{x}^{2},x<0}\end{array}\right.$,若f(a)>f(2-a),則a的取值范圍是a>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求下列各函數(shù)值域及單調(diào)遞增區(qū)間:
(1)y=$\sqrt{{3}^{2x-1}-\frac{1}{9}}$;(2)y=0.5${\;}^{{x}^{2}-2x-1}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案