【題目】已知橢圓的左右焦點分別為,點為橢圓上一點. 的重心為,內(nèi)心為,且,則該橢圓的離心率為( )
A. B. C. D.
【答案】A
【解析】設P(x0,y0),∵G為△F1PF2的重心,∴G點坐標為 G∵∴IG∥x軸∴I的縱坐標為,在焦點△F1PF2中,|PF1|+|PF2|=2a,|F1F2|=2c,
∴S△F1PF2= ,又∵I為△F1PF2的內(nèi)心,∴I的縱坐標為即為內(nèi)切圓半徑,
內(nèi)心I把△F1PF2分為三個底分別為△F1PF2的三邊,高為內(nèi)切圓半徑的小三角形
∴S△F1PF2=(|PF1|+|F1F2|+|PF2|)||,
∴|F1F2||y0|=(|PF1|+|F1F2|+|PF2|)||即×2c|y0|=(2a+2c|)||,∴2c=a,
離心率為
故選A
科目:高中數(shù)學 來源: 題型:
【題目】某中學初一年級500名學生參加某次數(shù)學測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…,[80,90],并整理得到如下頻率分布直方圖:
(1)從總體的500名學生中隨機抽取一人,估計其分數(shù)小于70的概率;
(2)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)判斷函數(shù)f(x)的奇偶性;
(2)判斷并證明f(x)的單調(diào)性;
(3)求關(guān)于x的不等式f(2x﹣1)+f(x+3)>0的解集.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= (x∈R),e是自然對數(shù)的底.
(1)計算f(ln2)的值;
(2)證明函數(shù)f(x)是奇函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學生在假期進行某種小商品的推銷,他利用所學知識進行了市場調(diào)查,發(fā)現(xiàn)這種商品當天的市場價格與他的進貨量(件)加上20成反比.已知這種商品每件進價為2元.他進100件這種商品時,當天賣完,利潤為100元.若每天的商品都能賣完,求這個學生一天的最大利潤是多少?獲得最大利潤時每天的進貨量是多少件?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】解答
(1)已知全集U={x|﹣5≤x≤10,x∈Z},集合M={x|0≤x≤7,x∈Z},N={x|﹣2≤x<4,x∈Z},求(UN)∩M(分別用描述法和列舉法表示結(jié)果)
(2)已知全集U=A∪B={0,1,2,3,4,5,6,7,8,9,10},若集合A∩UB={2,4,6,8},求集合B;
(3)已知集合P={x|ax2+2ax+1=0,a∈R,x∈R},當集合P只有一個元素時,求實數(shù)a的值,并求出這個元素.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,命題橢圓C1: 表示的是焦點在軸上的橢圓,命題對,直線與橢圓C2: 恒有公共點.
(1)若命題“”是假命題,命題“”是真命題,求實數(shù)的取值范圍.
(2)若真假時,求橢圓C1、橢圓C2的上焦點之間的距離d的范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班50名學生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,將測試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,如圖是按上述分組方法得到的頻率分布直方圖.
(Ⅰ)根據(jù)頻率分布直方圖,估計這50名學生百米測試成績的中位數(shù)和平均數(shù)(精確到0.1).
(Ⅱ)若從第一、五組中隨機取出三名學生成績,設取自第一組的個數(shù)為,求的分布列,期望及方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com