17.(Ⅰ)計算:cos(-$\frac{17π}{6}$);
(Ⅱ)已知tanα=2,求$\frac{3sinα-cosα}{2cosα+sinα}$的值.

分析 (Ⅰ)利用誘導(dǎo)公式,特殊角的三角函數(shù)值即可化簡求值得解.
(Ⅱ)利用同角三角函數(shù)基本關(guān)系式化簡所求,即可計算得解.

解答 解:(Ⅰ)cos(-$\frac{17π}{6}$)=cos(-4π+$\frac{7π}{6}$)=cos$\frac{7π}{6}$=cos(π+$\frac{π}{6}$)=-cos$\frac{π}{6}$=-$\frac{\sqrt{3}}{2}$.
(Ⅱ)∵tanα=2,
∴cosα≠0,
∴$\frac{3sinα-cosα}{2cosα+sinα}$=$\frac{3tanα-1}{2+tanα}$=$\frac{5}{4}$.

點評 本題主要考查了誘導(dǎo)公式,特殊角的三角函數(shù)值,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡求值中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.?dāng)?shù)列{an}中,a2=3,且an+1=nan,則a3=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題中錯誤的是( 。
A.命題“若x2-5x+6=0,則x=2”的逆否命題是“若x≠2,則x2-5x+6≠0”
B.對命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,x2+x+1≥0
C.若x,y∈R,則“x=y”是“xy≥($\frac{x+y}{2}$)2中等號成立”的充要條件
D.已知命題p和q,若p∨q為假命題,則命題p與q中必一真一假

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知a,b為正實數(shù),且a+b=1,則$\frac{1}{a}$+$\frac{1}$的最小值為4此時a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知2a=3,3b=8,則ab=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知橢圓E:$\frac{x^2}{4}+\frac{y^2}{2}$=1,直線l交橢圓于A,B兩點,若AB的中點坐標(biāo)為(1,-$\frac{1}{2}$),則l的方程為x-2y-3=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某學(xué)校餐廳每天供應(yīng)500名學(xué)生用餐,每星期一有A,B兩種菜可供選擇.調(diào)查資料表明,凡是在星期一選A種菜的學(xué)生,下星期一會有20%改選B種菜;而選B種菜的學(xué)生,下星期一會有30%改選A種菜,用an,bn分別表示在第n個星期的星期一選A種菜和選B種菜的學(xué)生人數(shù),若a1=300,則:
(1)求a2的值;
(2)判斷數(shù)列{an-300}是否常數(shù)數(shù)列,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若矩形ABCD中AB邊的長為2,則$\overrightarrow{AB}$•$\overrightarrow{AC}$的值等于(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若a=$\sqrt{2}$,b=4${\;}^{\frac{3}{8}}$,c=ln2,則( 。
A.c<b<aB.c<a<bC.a<b<cD.b<a<c

查看答案和解析>>

同步練習(xí)冊答案