17.已知函數(shù)f(log2x)的定義域為[1,4],則f(x)的定義域為( 。
A.[2,16]B.[1,2]C.[0,8]D.[0,2]

分析 根據(jù)復(fù)合命題定義域的求法,求解不等式即可得函數(shù)的定義域.

解答 解:∵y=f(log2x)的定義域為[1,4],
∴1≤x≤4,
則0≤log2x≤2,
即y=f(x)的定義域為[0,2].
故選:D.

點評 本題主要考查函數(shù)定義域的求法,利用復(fù)合函數(shù)定義域之間的關(guān)系是解決本題的關(guān)鍵,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知sinα=2cosα,計算:
(1)$\frac{2sinα-cosα}{sinα+2cosα}$;
(2)sin2α+sinαcosα-2cos2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a,b∈R,命題p:$\frac{a+b}{2}<\sqrt{ab}$,命題q:|a+b|=|a|+|b|,則p是q成立的充分不必要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=cos2x+sinx-1的值域為( 。
A.$[{-\frac{1}{4},\frac{1}{4}}]$B.[0,$\frac{1}{4}$]C.[-2,$\frac{1}{4}$]D.[-1,$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x3-3x
(1)求f(x)的單調(diào)區(qū)間;  
(2)求f(x)在區(qū)間[-3,2]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)$f(x)=ln(2x+\sqrt{4{x^2}+1})+a$,若f(0)=1,則$f(lg2)+f(lg\frac{1}{2})$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)x、y滿足約束條件$\left\{{\begin{array}{l}{y≥0}\\{x-y+1≥0}\\{x+y-3≤0}\end{array}}\right.$,則z=22x-y的最小值為$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知定義在R上的偶函數(shù)f(x)在[0,+∞)上遞減,若不等式2f(-ax+lnx+1)+f(ax-lnx-1)≥3f(l)對x∈[1,3]恒成立,則實數(shù)a的取值范圍是(  )
A.[2,e]B.[$\frac{1}{e}$,+∞)C.[$\frac{1}{e}$,e]D.[$\frac{1}{e}$,$\frac{2+ln3}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)y=sinωxcosωx+$\sqrt{3}$cos2ωx-$\frac{\sqrt{3}}{2}$的最小正周期為π,若想得到它的圖象,可將函數(shù)y=xosx的圖象(  )
A.橫坐標(biāo)伸長為原來的2倍,再向右平移$\frac{π}{6}$個單位
B.橫坐標(biāo)伸長為原來的2倍,再向右平移$\frac{π}{12}$個單位
C.橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,再向右平移$\frac{π}{12}$個單位
D.橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,再向右平移$\frac{π}{12}$個單位

查看答案和解析>>

同步練習(xí)冊答案