如圖,正方形ABCD中,E、F分別是AB、AD的中點(diǎn),將此正方形沿EF折成直二面角后,異面直線AF與BE所成角的余弦值為
1
2
1
2
分析:設(shè)正方形ABCD的邊長(zhǎng)為2,做出輔助線,過(guò)F做DC的平行線FH,由于∠AFH即為異面直線AF與BE所成角,利用余弦定理,解三角形即可得到答案.
解答:解:過(guò)F做FH∥DC,過(guò)A做AG⊥EF,連接GH,
在三角形AGH中,AH=
10
4
+
2
4
=
3

∠AFH即為異面直線AF與BE所成角
設(shè)正方形ABCD的邊長(zhǎng)為2,則在△AFH中,
AF=1,F(xiàn)H=2,AH=
3

∴cos∠AFH=
1
2

故答案為:
1
2
點(diǎn)評(píng):本題考查的點(diǎn)是異面直線及其所成的角,其中利用平移的方法,求出異面直線FB與AE所成角的平面角是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直,CE⊥AC,EF∥AC,AB=
2
,CE=EF=1.
(Ⅰ)求證:AF∥平面BDE;
(Ⅱ)求證:CF⊥平面BDE;
(Ⅲ)求二面角A-BE-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、如圖把正方形ABCD沿對(duì)角線BD折成直二面角,對(duì)于下面結(jié)論:
①AC⊥BD;
②CD⊥平面ABC;
③AB與BC成60°角;
④AB與平面BCD成45°角.
則其中正確的結(jié)論的序號(hào)為
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD、ABEF的邊長(zhǎng)都是1,而且平面ABCD、ABEF互相垂直,點(diǎn)M在AC上移動(dòng),點(diǎn)N在BF上移動(dòng),若CM=BN=a(0<a<
2
),則MN的長(zhǎng)的最小值為 ( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD所在平面與等腰三角形EAD所在平面相交于AD,AE⊥平面CDE.
(I)求證:AB⊥平面ADE;
(II)(理)在線段BE上存在點(diǎn)M,使得直線AM與平面EAD所成角的正弦值為
6
3
,試確定點(diǎn)M的位置.
(文)若AD=2,求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•溫州二模)如圖,正方形ABCD與正方形CDEF所成的二面角為60°,則直線EC與直線AD所成的角的余弦值為
2
4
2
4

查看答案和解析>>

同步練習(xí)冊(cè)答案