y=sin(2x-
π
3
)-sin2x的一個(gè)單調(diào)遞增區(qū)間是( 。
A、[-
π
6
,
π
3
]
B、[
π
12
,
7
12
π]
C、[
5
12
π,
13
12
π]
D、[
π
3
,
6
]
考點(diǎn):兩角和與差的正弦函數(shù)
專題:三角函數(shù)的求值
分析:化簡(jiǎn)可得y=-sin(2x+
π
3
),由2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
解不等式可得函數(shù)的所有單調(diào)遞增區(qū)間,取k=0可得答案.
解答: 解:化簡(jiǎn)可得y=sin(2x-
π
3
)-sin2x
=
1
2
sin2x-
3
2
cos2x-sin2x
=-(
3
2
cos2x+
1
2
sin2x)
=-sin(2x+
π
3
),
由2kπ+
π
2
≤2x+
π
3
≤2kπ+
2
可得kπ+
π
12
≤x≤kπ+
12
,
由于k∈Z,故當(dāng)k=0時(shí),函數(shù)的一個(gè)單調(diào)遞增區(qū)間為[
π
12
,
12
]
故選:B
點(diǎn)評(píng):本題考查兩角和與差的正弦函數(shù),涉及三角函數(shù)的單調(diào)性,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的方程:6x+2×4x=9x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的不等式2x2+ax+b<0的解集為B,B={x|1<
4
x+3
},求a,b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列7,x,11,y,z,則x=
 
,y=
 
,z=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

π
4
<α<β<
π
2
,sinα+cosα=a,sinβ+cosβ=b,則a,b的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-1,1,0)、B(1,2,0)、C(-2,-1,0)、D(3,4,0),則
AB
CD
方向的投影為( 。
A、
3
2
2
B、
3
15
2
C、-
3
2
2
D、-
3
15
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2為橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)與雙曲線C2的公共點(diǎn)左右焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,
△MF1F2是以線段MF1為底邊的等腰三角形,且|MF1|=2.若橢圓C1的離心率e=
3
8
,則雙曲線C2的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知z1,z2∈C,設(shè)A:z12+z22=0,B:z1,z2全為零,則A是B的(  )
A、充分條件
B、必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
100
+
y2
36
=1上一點(diǎn)P到它的右準(zhǔn)線的距離為10,則點(diǎn)P到它的左焦點(diǎn)的距離是( 。
A、8B、10C、12D、14

查看答案和解析>>

同步練習(xí)冊(cè)答案