【題目】若拋物線C:y=ax2﹣1(a≠0)上有不同兩點(diǎn)關(guān)于直線l:y+x=0對(duì)稱,則實(shí)數(shù)a的取值范圍是

【答案】( ,+∞)
【解析】解:設(shè)拋物線上關(guān)于直線l對(duì)稱的兩相異點(diǎn)為P(x1 , y1)、Q(x2 , y2),線段PQ的中點(diǎn)為M(x0 , y0),
設(shè)直線PQ的方程為y=x+b,由于P、Q兩點(diǎn)存在,
,有兩組不同的實(shí)數(shù)解,即得方程ax2﹣x﹣(1+b)=0有兩個(gè)解.①
∵△=1+4a(1+b)>0.②
x1+x2= ,
由中點(diǎn)坐標(biāo)公式可得,x0= = ,y0=x0+b= +b.
∵M(jìn)在直線L上,
∴0=x0+y0= + +b,
即b=﹣ ,代入②解得a>
故實(shí)數(shù)a的取值范圍( ,+∞)
所以答案是:( ,+∞).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知三角形的三邊構(gòu)成等比數(shù)列,且它們的公比為q,則q的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱與四邊形相交于, 平面, 的中點(diǎn), .

(I)求證: 平面

(II)求直線與平面成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心在y軸上的圓C經(jīng)過(guò)點(diǎn)A(1,2)和點(diǎn)B(0,3).
(Ⅰ)求圓C的方程;
(Ⅱ)若直線l在兩坐標(biāo)軸上的截距相等,且被圓C截得的弦長(zhǎng)為 ,求l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),直線.

(1)若直線與曲線相切,求切點(diǎn)橫坐標(biāo)的值;

(2)若函數(shù),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過(guò)x的部分按平價(jià)收費(fèi),超出x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過(guò)抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.

(Ⅰ)求直方圖中a的值;
(Ⅱ)設(shè)該市有30萬(wàn)居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說(shuō)明理由;
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過(guò)標(biāo)準(zhǔn)x(噸),估計(jì)x的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)為何值時(shí), 軸為曲線的切線;

(2)用表示中的最小值,設(shè)函數(shù),討論零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}滿足an+1=2an+n﹣1,且a1=1.
(Ⅰ)求證:{an+n}為等比數(shù)列;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為方便市民休閑觀光,市政府計(jì)劃在半徑為200米,圓心角為120°的扇形廣場(chǎng)內(nèi)(如圖所示),沿△ABC邊界修建觀光道路,其中A、B分別在線段CP、CQ上,且A、B兩點(diǎn)間距離為定長(zhǎng) 米.

(1)當(dāng)∠BAC=45°時(shí),求觀光道BC段的長(zhǎng)度;
(2)為提高觀光效果,應(yīng)盡量增加觀光道路總長(zhǎng)度,試確定圖中A、B兩點(diǎn)的位置,使觀光道路總長(zhǎng)度達(dá)到最長(zhǎng)?并求出總長(zhǎng)度的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案