【題目】如圖,在四棱柱中,平面ABCD,底面ABCD是矩形,,,M的中點(diǎn).

1)求證:D1M//平面BDC1

2)若棱上存在點(diǎn)Q,滿足與平面所成角的正弦值為,求異面直線BQ所成角的余弦值.

【答案】1)見解析(2

【解析】

1)先證線線平行即,然后根據(jù)線面平行的判定定理可證線面平行;

2)先利用已知線面角確定點(diǎn)Q的位置,然后找所求的異面直線所成的角,最后在三角形中求解即可.

解:(1)連接于點(diǎn)H,連接BH,則,

故四邊形為平行四邊形,

平面,平面

平面

2)作于點(diǎn)E,連接,

因?yàn)樗睦庵?/span>中,平面ABCD,底面ABCD是矩形,

所以,

,

所以,

平面平面,

所以平面

,又,

所以

,

故由可得

所以,所以Q的中點(diǎn).

的中點(diǎn)T,連接,,則,故為異面直線BQ所成的角.

易知,,平面,所以,,所以,

故異面直線BQ所成角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】盒中有形狀、大小都相同的2個(gè)紅色球和3個(gè)黃色球,從中取出一個(gè)球,觀察顏色后放回并往盒中加入同色球4個(gè),再?gòu)暮兄腥〕鲆粋(gè)球,則此時(shí)取出黃色球的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)列對(duì)任意連續(xù)三項(xiàng),均有,則稱該數(shù)列為跳躍數(shù)列”.

1)判斷下列兩個(gè)數(shù)列是否是跳躍數(shù)列:

①等差數(shù)列:

②等比數(shù)列:;

2)若數(shù)列滿足對(duì)任何正整數(shù),均有.證明:數(shù)列是跳躍數(shù)列的充分必要條件是.

3)跳躍數(shù)列滿足對(duì)任意正整數(shù)均有,求首項(xiàng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時(shí),求證:;

(2)討論函數(shù)在R上的零點(diǎn)個(gè)數(shù),并求出相對(duì)應(yīng)的a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)). 為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,若直線與曲線交于兩點(diǎn).

1)若,求;

2)若點(diǎn)是曲線上不同于的動(dòng)點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過點(diǎn)的直線l與拋物線E)交于B,C兩點(diǎn),且A為線段的中點(diǎn).

1)求拋物線E的方程;

2)已知直線與直線l平行,過直線上任意一點(diǎn)P作拋物線E的兩條切線,切點(diǎn)分別為M,N,是否存在這樣的實(shí)數(shù)m,使得直線恒過定點(diǎn)A?若存在,求出m的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn),,.

(1)求證:平面BCD;

(2)求異面直線AB與CD所成角的余弦值;

(3)求點(diǎn)E到平面ACD的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C的方程為.在以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,P的極坐標(biāo)為,直線l過點(diǎn)P.

1)若直線lOP垂直,求直線l的直角標(biāo)方程:

2)若直線l與曲線C交于AB兩點(diǎn),且,求直線l的傾斜角.

查看答案和解析>>

同步練習(xí)冊(cè)答案