分析 (1)推導出CO⊥A1B1,A1C1=C1B1,C1O⊥A1B1,從而A1B1⊥平面CC1O,再由A1B1∥AB,能證明AB⊥平面CC1O.
(2)以C為原點,CA為x軸,CB為y軸,CO為z軸,建立空間直角坐標系,利用向量法能求出二面角A-CC1-B的正弦值.
解答 證明:(1)∵點C在平面${A}_{1}{B}_{1}{{C}_{1}}^{\;}$內(nèi)的射影點為A1B1的中點O,
∴CO⊥A1B1,∵AC=BC,∴A1C1=C1B1,
∵O為A1B1的中點,∴C1O⊥A1B1,
∵C1O∩CO=O,∴A1B1⊥平面CC1O,
∵A1B1∥AB,∴AB⊥平面CC1O.
解:(2)以C為原點,CA為x軸,CB為y軸,CO為z軸,建立空間直角坐標系,
設AC=1,則CC1=1,C1O=$\frac{\sqrt{2}}{2}$,
∵∠COC1=$\frac{π}{2}$,∴CO=$\sqrt{{1}^{2}-(\frac{\sqrt{2}}{2})^{2}}$=$\frac{\sqrt{2}}{2}$,
則C(0,0,0),C1(-$\frac{1}{2},-\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),A(1,0,0),B(0,1,0),
∴$\overrightarrow{C{C}_{1}}$=(-$\frac{1}{2},-\frac{1}{2}$,$\frac{\sqrt{2}}{2}$),$\overrightarrow{CA}$=(1,0,0),$\overrightarrow{CB}$=(0,1,0),
設平面ACC1的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CA}=\frac{1}{2}x-\frac{1}{2}y-\frac{\sqrt{2}}{2}z=0}\\{\overrightarrow{n}•\overrightarrow{C{C}_{1}}=x=0}\end{array}\right.$,取y=$\sqrt{2}$,得$\overrightarrow{n}$=(0,$\sqrt{2},1$),
同理得平面BCC1的法向量$\overrightarrow{m}$=($\sqrt{2},0,1$),
設二面角A-CC1-B的平面角為θ,
則cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{m}|}{|\overrightarrow{n}|•|\overrightarrow{m}|}$=$\frac{1}{3}$.
sinθ=$\sqrt{1-(\frac{1}{3})^{2}}$=$\frac{2\sqrt{2}}{3}$,
∴二面角A-CC1-B的正弦值為$\frac{2\sqrt{2}}{3}$.
點評 本題考查線面垂直的證明,考查二面角的正弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x>-1} | B. | {x|x≥-1} | C. | {x|-2≤x≤-1} | D. | {x|-1≤x≤3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com