已知函數(shù)f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)當a=
1
2
時,判斷并證明f(x)的單調(diào)性;
(2)當a=-1時,求函數(shù)f(x)的最小值.
考點:函數(shù)單調(diào)性的性質(zhì),函數(shù)的最值及其幾何意義
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)當a=
1
2
時,f(x)=
x2+2x+a
x
=x+2+
1
2x
=x+
1
2x
+2.任取x1,x2是[1,+∞)上的任意兩個實數(shù),且x1<x2,利用做差法,可判斷函數(shù)f(x)在[1,+∞)上是增函數(shù).
(2)當a=-1時,f(x)=x-
1
x
+2.由函數(shù)y1=x和y2=-
1
x
在[1,+∞)上都是增函數(shù),可得f(x)=x-
1
x
+2在[1,+∞)上是增函數(shù),故當x=1時,f(x)取得最小值.
解答: 解:(1)當a=
1
2
時,f(x)=
x2+2x+a
x
=x+2+
1
2x
=x+
1
2x
+2.
設(shè)x1,x2是[1,+∞)上的任意兩個實數(shù),且x1<x2
則f(x1)-f(x2)=(x1+
1
2x1
)-(x2+
1
2x2

=(x1-x2)+(
1
2x1
-
1
2x2
)=(x1-x2)+
x2-x1
2x1x2

=(x1-x2)(1-
1
2x1x2
)=(x1-x2)•
x1x2-
1
2
x1x2

因為1≤x1<x2,所以x1-x2<0,x1•x2>0,
x1x2-
1
2
>0,
所以f(x1)-f(x2)<0,即f(x1)<f(x2).
所以函數(shù)f(x)在[1,+∞)上是增函數(shù).
(2)當a=-1時,f(x)=x-
1
x
+2.
因為函數(shù)y1=x和y2=-
1
x
在[1,+∞)上都是增函數(shù),
所以f(x)=x-
1
x
+2在[1,+∞)上是增函數(shù).
當x=1時,f(x)取得最小值f(1)=1-
1
1
+2=2,
即函數(shù)f(x)的最小值為2.
點評:本題考查的知識點是函數(shù)單調(diào)性的性質(zhì),函數(shù)的最值及其幾何意義,函數(shù)的單調(diào)性的證明,是函數(shù)單調(diào)性與最值的綜合應(yīng)用,難度中檔.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

某人在靜水中游泳,速度為4
3
公里/小時,他在水流速度為4公里/小時的河中游泳.
(1)若他垂直游向河對岸,則他實際沿什么方向前進?實際前進的速度為多少?
(2)他必須朝哪個方向游,才能沿與水流垂直的方向前進?實際前進的速度為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=x2013+ax3-
b
x
-8,f(-2)=10,求f(2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
a
x
+b(x≠0).,其中a,b∈R
(1)若曲線y=f(x)在點P(2,f(2))處的切線方程為y=3x+1,求函數(shù)f(x)的解析式;
(2)當a>0時,求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx-
1
2
ax2
-2x(a<0).
(Ⅰ)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求實數(shù)f′(x)≥0的取值范圍;
(Ⅱ)若a=-
1
2
,且關(guān)于a≤
1-2x
x2
=(
1
x
-1)2
-1的方程f(x)=-
1
2
x+b在[1,4]上恰有兩個不等的實根,求實數(shù)b的取值范圍;
(Ⅲ)設(shè)各項為正數(shù)的數(shù)列{an}滿足a1=1,an+1=lnan+an+2(n∈N*),求證:an≤2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C1
x=1+
2
cost
y=1+
2
sint
(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為p=2sinθ.
(1)把C1的參數(shù)方程化為極坐標方程;
(2)求C1與C2交點的極坐標(p≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C1的中心在坐標原點,兩個焦點分別為F1(-2,0),F(xiàn)2(2,0),點A(2,3)在橢圓C1上,過點A的直線L與拋物線C2:x2=4y交于不同兩點B,C,拋物線C2在點B,C處的切線分別為l1,l2,且l1與l2交于點P.
(1)求橢圓C1的方程;
(2)是否存在滿足(|
PF1
|-|
AF1
|)+(|
PF2
|-|
AF2
|)=0的點P?若存在,指出這樣的點P有幾個,并求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在平面內(nèi),ABCD是AB=2,BC=
2
的矩形,△PAB是正三角形,將△PAB沿AB折起,使PC⊥BD,如圖2,E為AB的中點,設(shè)直線l過點C且垂直于矩形ABCD所在平面,點F是直線l上的一個動點,且與點P位于平面ABCD的同側(cè).

(1)求證:PE⊥平面ABCD;
(2)設(shè)二面角F-PB-D的大小為θ,若θ=
π
4
,求線段CF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出定義:若m-
1
2
<x≤m+
1
2
,(其中m為整數(shù)),則m叫作離實數(shù)x最近的整數(shù),記作{x},即{x}=m,在此基礎(chǔ)上,給出下列關(guān)于函數(shù)f(x)=|{x}-x|的命題:
①函數(shù)f(x)的定義域是R,值域是[-
1
2
,
1
2
];
②函數(shù)y=f(x)的圖象關(guān)于y軸對稱;
③函數(shù)y=f(x)的圖象關(guān)于原點對稱;
④函數(shù)y=f(x)在[-
1
2
,
1
2
]上是增函數(shù);
其中說法正確的是
 

查看答案和解析>>

同步練習冊答案