A. | 0 | B. | $\frac{{\sqrt{3}}}{12}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\frac{1}{9}$ |
分析 以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,利用向量法能求出直線AE與D1F所成角的余弦值.
解答 解:以D為原點,DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標系,
設(shè)正方體ABCD-A1B1C1D1中棱長為2,
則A(2,0,0),E(0,2,1),D1(0,0,2),F(xiàn)(2,2,1),
$\overrightarrow{AE}$=(-2,2,1),$\overrightarrow{{D}_{1}F}$=(2,2,-1),
設(shè)直線AE與D1F所成角為θ,
則cosθ=|$\frac{-4+4-1}{\sqrt{4+4+1}•\sqrt{4+4+1}}$|=$\frac{1}{9}$.
∴直線AE與D1F所成角的余弦值為$\frac{1}{9}$.
故選D.
點評 本題考查兩異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,1) | B. | (1,+∞) | C. | (2,+∞) | D. | (-∞,2) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,2] | B. | ($\frac{1}{2}$,1) | C. | (1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com