分析 由已知結(jié)合已知角的范圍求得sin(α+β),cosα的值,再由cosβ=cos[(α+β)-α],展開兩角差的余弦得答案.
解答 解:∵α,β均為銳角,∴0<α+β<π.
又cos(α+β)=-$\frac{11}{14}$,∴$\frac{π}{2}<α+β<π$,且$sin(α+β)=\sqrt{1-(-\frac{11}{14})^{2}}=\frac{5\sqrt{3}}{14}$.
∵sinα=$\frac{4\sqrt{3}}{7}$,∴$cosα=\sqrt{1-(\frac{4\sqrt{3}}{7})^{2}}=\frac{1}{7}$.
∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα
=$-\frac{11}{14}×\frac{1}{7}+\frac{5\sqrt{3}}{14}×\frac{4\sqrt{3}}{7}=\frac{1}{2}$.
點評 本題考查兩角和與差的余弦,關(guān)鍵是“拆角配角”思想的應(yīng)用,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1006 | B. | 1007 | C. | 1008 | D. | 1009 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
x | … | 0.5 | 1 | 1.5 | 1.7 | 1.9 | 2 | 2.1 | 2.2 | 2.3 | 3 | 4 | 5 | 7 | … |
y | … | 16 | 10 | 8.34 | 8.1 | 8.01 | 8 | 8.01 | 8.04 | 8.08 | 8.6 | 10 | 11.6 | 15.14 | … |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com