1.已知雙曲線與橢圓$\frac{x^2}{9}+\frac{y^2}{25}=1$的焦點(diǎn)相同,且它們的離心率的乘積等于$\frac{8}{5}$,則此雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{y^2}{4}-\frac{x^2}{12}=1$C.$\frac{x^2}{12}-\frac{y^2}{4}=1$D.$\frac{y^2}{12}-\frac{x^2}{4}=1$

分析 根據(jù)題意,求出橢圓$\frac{x^2}{9}+\frac{y^2}{25}=1$的焦點(diǎn)坐標(biāo)以及離心率e,由此設(shè)雙曲線的方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1,由題意可得a2+b2=16以及e=$\frac{c}{a}$=$\frac{5}{4}$,解可得a2=4,b2=12,代入雙曲線的方程即可得答案.

解答 解:根據(jù)題意,橢圓的方程為$\frac{x^2}{9}+\frac{y^2}{25}=1$,
其焦點(diǎn)坐標(biāo)為(0,±4),離心率e=$\frac{4}{5}$,
對(duì)于雙曲線,設(shè)其方程為$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1,
則有a2+b2=16,
且其離心率e=$\frac{c}{a}$=$\frac{5}{4}$,
解可得a2=4,b2=12,
則雙曲線的方程為:$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1;
故選:B.

點(diǎn)評(píng) 本題考查雙曲線、橢圓的標(biāo)準(zhǔn)方程,關(guān)鍵是求出橢圓的焦點(diǎn)坐標(biāo)以及離心率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖在四棱錐P-ABCD中,底面ABCD為矩形,側(cè)面PAD⊥底面ABCD,PA⊥PC;
(1)求證:平面PAB⊥平面PCD;
(2)若過(guò)點(diǎn)B的直線l垂直平面PCD,求證:l∥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)等比數(shù)列{an}的公比為q,前n項(xiàng)和為T(mén)n.( 。
A.若q>1,則數(shù)列{Tn}單調(diào)遞增B.若數(shù)列{Tn}單調(diào)遞增,則q>1
C.若Tn>0,則數(shù)列{Tn}單調(diào)遞增D.若數(shù)列{Tn}單調(diào)遞增,則Tn>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ex(sinx+cosx).
(1)如果對(duì)于任意的x∈[0,$\frac{π}{2}$],f(x)≥kx+excosx恒成立,求實(shí)數(shù)k的取值范圍;
(2)若x∈[-$\frac{2015π}{2}$,$\frac{2017π}{2}$],過(guò)點(diǎn)M($\frac{π-1}{2}$,0)作函數(shù)f(x)的圖象的所有切線,令各切點(diǎn)的橫坐標(biāo)按從小到大構(gòu)成數(shù)列{xn},求數(shù)列{xn}的所有項(xiàng)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)數(shù)列{an}滿足${a_1}=\frac{3}{8}$,且對(duì)任意的n∈N*,滿足${a_{n+2}}-{a_n}≤{3^n},{a_{n+4}}-{a_n}≥10×{3^n}$,則a2017=$\frac{{{3^{2017}}}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,已知等腰梯形ABCD中,AD∥BC,BC=2AD=2AB=4,將△ABD沿BD折到△A′BD的位置,使平面A′BD⊥平面CBD.
(Ⅰ)求證:CD⊥A′B;
(Ⅱ)試在線段A′C上確定一點(diǎn)P,使得二面角P-BD-C的大小為45°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}x+y-2≥0\\ x-y+1≥0\\ x≤3\end{array}\right.$,若z=mx+y的最小值為-3,則m的值為( 。
A.-9B.$-\frac{7}{3}$C.$-\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某電商在6月18日之后,隨機(jī)抽取100名顧客進(jìn)行回訪,按顧客的年齡分成6組,得到如下頻數(shù)分布表:
 顧客年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65]
 頻數(shù) 4 24 32 20 16 4
(1)在表中作出這些數(shù)據(jù)的頻率分布直方圖;
(2)根據(jù)(1)中的頻率分布直方圖,求這100名顧客年齡的平均數(shù);
(3)用分層抽樣的方法從這100名顧客中抽取25人,再?gòu)某槿〉?5人中隨機(jī)抽取2人,求年齡在[25,35)內(nèi)的顧客人數(shù)X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若Sn等差數(shù)列{an}的前n項(xiàng)和,且a3=2,a8=10,則S10=60.

查看答案和解析>>

同步練習(xí)冊(cè)答案