分析 (Ⅰ)由已知a(sinA-sinB)=(c-b)(sinC+sinB)利用正弦定理,得a(a-b)=(c-b)(c+b),即a2+b2-c2=ab.再利用余弦定理即可得出.
(Ⅱ)由(Ⅰ)知a2+b2-c2=ab.變形為(a+b)2-3ab=c2=7,又S=$\frac{1}{2}ab$sinC=$\frac{\sqrt{3}}{4}$ab=$\frac{3\sqrt{3}}{2}$,可得ab=6,可得a+b=5.即可得出.
解答 解:(Ⅰ)由已知a(sinA-sinB)=(c-b)(sinC+sinB)
由正弦定理,得a(a-b)=(c-b)(c+b),(2分)
即a2+b2-c2=ab.(3分)
所以cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{1}{2}$,(5分)
又C∈(0,π),所以C=$\frac{π}{3}$.(6分)
(Ⅱ)由(Ⅰ)知a2+b2-c2=ab.所以(a+b)2-3ab=c2=7,(8分)
又S=$\frac{1}{2}ab$sinC=$\frac{\sqrt{3}}{4}$ab=$\frac{3\sqrt{3}}{2}$,
所以ab=6,(9分)
所以(a+b)2=7+3ab=25,即a+b=5.(11分)
所以△ABC周長為a+b+c=5+$\sqrt{7}$.(12分)
點評 本題考查了正弦定理余弦定理三角形面積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $?x∈(1,+∞),x_0^2+2{x_0}+2>0$ | B. | $?x∈({-∞,1}],x_0^2+2{x_0}+2>0$ | ||
C. | $?{x_0}∈(1,+∞),x_0^2+2{x_0}+2>0$ | D. | $?{x_0}∈({-∞,1}],x_0^2+2{x_0}+2>0$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1(y≠0) | B. | $\frac{{x}^{2}}{5}$-$\frac{{y}^{2}}{9}$=1(y≠0) | C. | $\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1(y≠0) | D. | $\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1(y≠0) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3-4\sqrt{3}}{10}$ | B. | -$\frac{3-4\sqrt{3}}{10}$ | C. | $\frac{4-3\sqrt{3}}{10}$ | D. | -$\frac{4-3\sqrt{3}}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
是否愿意提供志愿者服務 性別 | 愿意 | 不愿意 |
男生 | 25 | 5 |
女生 | 15 | 15 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com