定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界.
已知函數(shù);.
(1)當(dāng)時,求函數(shù)在上的值域,并判斷函數(shù)在上是否為有界函數(shù),請說明理由;
(2)若函數(shù)在上是以3為上界的有界函數(shù),求實數(shù)的取值范圍;
(3)若,函數(shù)在上的上界是,求的取值范圍.
(1)在的值域為,故不存在常數(shù),使成立
所以函數(shù)在上不是有界函數(shù)。
(2)實數(shù)的取值范圍為。
(3)當(dāng)時,的取值范圍是;
當(dāng)時,的取值范圍是
【解析】[解]:(1)當(dāng)時,
因為在上遞減,所以,即在的值域為
故不存在常數(shù),使成立
所以函數(shù)在上不是有界函數(shù)。 ……………4分(沒有判斷過程,扣2分)
(2)由題意知,在上恒成立!5分
,
∴ 在上恒成立………6分
∴ ………7分
設(shè),,,由得 t≥1,
設(shè),
所以在上遞減,在上遞增,………9分(單調(diào)性不證,不扣分)
在上的最大值為, 在上的最小值為
所以實數(shù)的取值范圍為。…………………………………11分
(3),∵ m>0 , ∴ 在上遞減,…12分
∴ 即………13分
①當(dāng),即時,, ………14分
此時 ,………16分②當(dāng),即時,,
此時 , ---------17分
綜上所述,當(dāng)時,的取值范圍是;
當(dāng)時,的取值范圍是………18分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆四川成都七中實驗學(xué)校高一3月月考數(shù)學(xué)試卷(解析版) 題型:選擇題
定義在上的函數(shù),如果對于任意給定的等比數(shù)列,仍是等比數(shù)列,則稱為“保等比數(shù)列函數(shù)”. 現(xiàn)有定義在上的如下函數(shù):
① ② ③ ④
則其中是“保等比數(shù)列函數(shù)”的的序號為( )
A.①② B.③④ C.①③ D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省東莞市高三第三次月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
定義在上的函數(shù),如果對于任意給定的等比數(shù)列,仍是等比數(shù)列,則稱為“保等比數(shù)列函數(shù)”. 現(xiàn)有定義在上的如下函數(shù):
①; ②; ③; ④.
則其中是“保等比數(shù)列函數(shù)”的的序號為( )
A.① ② B.③ ④ C.① ③ D.② ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖北卷解析版) 題型:選擇題
定義在上的函數(shù),如果對于任意給定的等比數(shù)列, 仍是等比數(shù)列,則稱為“保等比數(shù)列函數(shù)”. 現(xiàn)有定義在上的如下函數(shù):①; ②; ③; ④.則其中是“保等比數(shù)列函數(shù)”的的序號為
A、① ② B、③ ④ C、① ③ D、② ④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖北卷解析版) 題型:選擇題
定義在上的函數(shù),如果對于任意給定的等比數(shù)列仍是等比數(shù)列,則稱為“保等比數(shù)列函數(shù)”,F(xiàn)有定義在上的如下函數(shù):①;②;③;④。則其中是“保等比數(shù)列函數(shù)”的的序號為
A、①② B、③④ C、①③ D、②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年安徽省高三第一次質(zhì)量檢測理科數(shù)學(xué) 題型:填空題
定義在上的函數(shù),如果,則實數(shù)的取值范圍為______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com