分析 由圓的對(duì)稱(chēng)性可得只需考慮圓心Q(e2+1,0)到函數(shù)f(x)=ex圖象上一點(diǎn)的距離的最小值.設(shè)f(x)圖象上一點(diǎn)(m,em),求得切線的斜率,由兩直線垂直的條件:斜率之積為-1,可得e2m-e2+m-1=0,g(x)=e2x-e2+x-1,求出導(dǎo)數(shù),判斷單調(diào)性,可得零點(diǎn)e,運(yùn)用兩點(diǎn)的距離公式計(jì)算即可得到所求值.
解答 解:由圓的對(duì)稱(chēng)性可得只需考慮圓心Q(e2+1,0)到函數(shù)f(x)=ex圖象上一點(diǎn)的距離的最小值.
設(shè)f(x)圖象上一點(diǎn)(m,em),
由f(x)的導(dǎo)數(shù)為f′(x)=ex,
即有切線的斜率為k=em,
可得$\frac{{e}^{m}}{m-{e}^{2}-1}$=-e-m,
即有e2m-e2+m-1=0,
由g(x)=e2x-e2+x-1,可得g′(x)=2e2x+1>0,g(x)遞增.
又g(1)=0,
可得x=1處點(diǎn)(1,e)到點(diǎn)Q的距離最小,且為$e\sqrt{{e}^{2}+1}$,
則線段PQ的長(zhǎng)度的最小值為$e\sqrt{{e^2}+1}-1$,
故答案為$e\sqrt{{e^2}+1}-1$.
點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率和單調(diào)性,考查圓的對(duì)稱(chēng)性和兩點(diǎn)的距離公式,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 36種 | B. | 30種 | C. | 24種 | D. | 12種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {0} | B. | {1,2,3} | C. | {0,4} | D. | {4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 數(shù)列{xi}可能是等比數(shù)列 | B. | 數(shù)列{yi}是常數(shù)列 | ||
C. | 數(shù)列{xi}可能是等差數(shù)列 | D. | 數(shù)列{xi+yi }可能是等比數(shù)列 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com