11.用“<”或”>”填空:($\frac{1}{3}$)0.8<($\frac{1}{3}$)0.7

分析 根據(jù)指數(shù)函數(shù)y=ax,0<a<1,為減函數(shù),即可判斷.

解答 解:根據(jù)指數(shù)函數(shù)y=ax,0<a<1,為減函數(shù),
∴($\frac{1}{3}$)0.8<($\frac{1}{3}$)0.7,
故答案為:<

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)的單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx-mx+m,(m∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)≤0對任意x∈(0,+∞)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=($\frac{1}{3}$)x,a>0,b>0,a≠b,m=f($\frac{a+b}{2}$),n=f($\sqrt{ab}$),p=f($\frac{2ab}{a+b}$),則m,n,p 的大小關(guān)系為( 。
A.m<n<pB.m<p<nC.p<m<nD.p<n<m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,已知矩形ABCD中,AB=6,AD=4,過點(diǎn)C的直線l與AB,AD的延長線分別交于點(diǎn)M,N.
(1)若△AMN的面積不小于50,求線段DN的長度的取值范圍;
(2)在直線l繞點(diǎn)C旋轉(zhuǎn)的過程中,△AMN的面積S是否存在最小值?若存在,求出這個(gè)最小值及相應(yīng)的AM,AN的長度;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知三角形的三個(gè)頂點(diǎn)A(-5,0),B(3,-3),C(0,2),求AB邊所在直線的方程及該邊上高線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若|$\overrightarrow{AB}$|=5,|$\overrightarrow{AC}$|=8,則|$\overrightarrow{BC}$|的取值范圍是( 。
A.[3,8]B.(3,8)C.[3,13]D.(3,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$=(cosθ,sinθ),θ∈(0,π),$\overrightarrow$=(1,$\sqrt{3}$),若$\overrightarrow{a}$與$\overrightarrow$共線,則sin2θ=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x2+bx+c且f(-1)=f(3),則( 。
A.f (1)>c>f (-1)B.f (1)<c<f (-1)C.c>f (-1)>f (1)D.c<f (-1)<f (1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知任意角α的終邊經(jīng)過點(diǎn)P(-3,m),且cosα=-$\frac{3}{5}$,則sinα=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.±$\frac{4}{5}$D.±$\frac{3}{5}$

查看答案和解析>>

同步練習(xí)冊答案