【題目】在5月6日返校體檢中,學號為()的五位同學的體重增加量是集合中的元素,并滿足,則這五位同學的體重增加量所有可能的情況有________種
【答案】252
【解析】
按照五位同學的體重增加量數(shù)字的個數(shù)分五種情況討論得解.
當五位同學的體重增加量是1個數(shù)字時,有種情況;
當五位同學的體重增加量是2個不同數(shù)字時,有種情況(類似隔板法,把五個同學按照的順序排好,他們之間有4個空,從4個空里選1個空放隔板把他們分隔成兩個部分,有種方法,再從6個體重增加量的集合里選兩個數(shù)給他們,有種方法,即此時有種方法,下面操作方法都相同.);
當五位同學的體重增加量是3個不同數(shù)字時,有種情況;
當五位同學的體重增加量是4個不同數(shù)字時,有種情況;
當五位同學的體重增加量是5個不同數(shù)字時,有種情況.
所以共有種不同的方法.
故答案為:252
科目:高中數(shù)學 來源: 題型:
【題目】為了解甲、乙兩種離子在小鼠體內的殘留程度,進行如下試驗:將200只小鼠隨機分成兩組,每組100只,其中組小鼠給服甲離子溶液,組小鼠給服乙離子溶液.每只小鼠給服的溶液體積相同、摩爾濃度相同.經(jīng)過一段時間后用某種科學方法測算出殘留在小鼠體內離子的百分比.根據(jù)試驗數(shù)據(jù)分別得到如下直方圖:
記為事件:“乙離子殘留在體內的百分比不低于”,根據(jù)直方圖得到的估計值為.
(1)求乙離子殘留百分比直方圖中的值;
(2)分別估計甲、乙離子殘留百分比的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列是合情推理的是( )
①由正三角形的性質類比出正三棱錐的有關性質;
②由正方形矩形的內角和是,歸納出所有四邊形的內角和都是;
③三角形內角和是,四邊形內角和是,五邊形內角和是,由此得出凸邊形內角和是;
④小李某次數(shù)學考試成績是90分,由此推出小李的全班同學這次數(shù)學考試的成績都是90分.
A.①②B.①②③C.①②④D.②③④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l的方程為3x+4y-12=0,求直線l′的方程,使得:
(1)l′與l平行且過點(-1,3);
(2)l′與l垂直且l′與兩坐標軸圍成的三角形的面積為4.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) (為自然對數(shù)的底數(shù))
(1)討論函數(shù)的單調性;
(2)當且時,在上為減函數(shù),求實數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐中,底面ABC,M是 BC的中點,若底面ABC是邊長為2的正三角形,且PB與底面ABC所成的角為. 求:
(1)三棱錐的體積;
(2)異面直線PM與AC所成角的大小. (結果用反三角函數(shù)值表示)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017-2018學年安徽省六安市第一中學高三上學期第二次月考)已知函數(shù)是偶函數(shù).
(1)求的值;
(2)若函數(shù)的圖象與直線沒有交點,求的取值范圍;
(3)若函數(shù),是否存在實數(shù)使得的最小值為0,若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁、戊和己6人圍坐在一張正六邊形的小桌前,每邊各坐一人.已知:①甲與乙正面相對;②丙與丁不相鄰,也不正面相對.若己與乙不相鄰,則以下選項正確的是( )
A.若甲與戊相鄰,則丁與己正面相對B.甲與丁相鄰
C.戊與己相鄰D.若丙與戊不相鄰,則丙與己相鄰
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com