精英家教網 > 高中數學 > 題目詳情

【題目】某健康社團為調查居民的運動情況,統(tǒng)計了某小區(qū)100名居民平均每天的運動時長(單位:小時)并根據統(tǒng)計數據分為六個小組(所調查的居民平均每天運動時長均在內),得到的頻率分布直方圖如圖所示.

1)求出圖中的值,并估計這名居民平均每天運動時長的平均值及中位數(同一組中的每個數據可用該組區(qū)間的中點值代替);

2)為了分析出該小區(qū)居民平均每天的運動量與職業(yè)、年齡等的關系,該社團按小組用分層抽樣的方法抽出20名居民進一步調查,試問在時間段內應抽出多少人?

【答案】1,平均值為2.4,中位數2.4 24

【解析】

1)頻率分布直方圖中各組的頻率之和為1,能求出.利用平均值及中位數計算公式即可得出平均值及中位數.

2)先求得時間段的頻率,由此能求出時間段內的人數.

1)由,

解得.

100名居民運動時長的平均值為

,

由圖可知中位數內,因為

解得.

2)由題知,時間段的頻率為,

則應抽出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是( 。

A.2017年第一季度GDP增速由高到低排位第5的是浙江省.

B.與去年同期相比,2017年第一季度的GDP總量實現了增長.

C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D.去年同期河南省的GDP總量不超過4000億元.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018屆安徽省合肥市高三第一次教學質量檢測】一家大型購物商場委托某機構調查該商場的顧客使用移動支付的情況.調查人員從年齡在內的顧客中,隨機抽取了180人,調查結果如表:

1)為推廣移動支付,商場準備對使用移動支付的顧客贈送1個環(huán)保購物袋.若某日該商場預計有12000人購物,試根據上述數據估計,該商場當天應準備多少個環(huán)保購物袋?

2)某機構從被調查的使用移動支付的顧客中,按分層抽樣的方式抽取7人作跟蹤調查,并給其中2人贈送額外禮品,求獲得額外禮品的2人年齡都在內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數方程為(t為參數),它與曲線

C:(y-2)2-x2=1交于A、B兩點.

(1)求|AB|的長;

(2)在以O為極點,x軸的正半軸為極軸建立極坐標系,設點P的極坐標為,求點P到線段AB中點M的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線C的參數方程為為參數).以坐標原點O為極,z軸正半軸為極軸建立極坐標系,直線的極坐標方程為.

()求曲線C的普通方程和直線的直角坐標方程;

()設點.若直線與曲線C相交于A,B兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在地上有同樣大小的 5 塊積木,一堆 2 個,一堆 3 個,要把積木一塊一塊的全部放到某個盒子里,每次 只能取出其中一堆最上面的一塊,則不同的取法有______種(用數字作答).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率,且圓過橢圓的上,下頂點.

1)求橢圓的方程.

2)若直線的斜率為,且直線交橢圓兩點,點關于點的對稱點為,點是橢圓上一點,判斷直線的斜率之和是否為定值,如果是,請求出此定值:如果不是,請說明理.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的組合體中,三棱柱的側面是圓柱的軸截面,是圓柱底面圓周上不與重合的一個點.

1)若圓柱的軸截面是正方形,當點是弧的中點時,求異面直線的所成角的大;

2)當點是弧的中點時,求四棱錐與圓柱的體積比.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某城市為配合國家“一帶一路”戰(zhàn)略,發(fā)展城市旅游經濟,擬在景觀河道的兩側,沿河岸直線修建景觀(橋),如圖所示,河道為東西方向,現要在矩形區(qū)域內沿直線將接通.已知,,河道兩側的景觀道路修復費用為每米萬元,架設在河道上方的景觀橋部分的修建費用為每米萬元.

(1)若景觀橋長時,求橋與河道所成角的大;

(2)如何景觀橋的位置,使矩形區(qū)域內的總修建費用最低?最低總造價是多少?

查看答案和解析>>

同步練習冊答案