已知函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,試求a,b的值,
(1)并求出f(x)的單調(diào)區(qū)間
(2)在區(qū)間[-2,2]上的最大值與最小值
(3)若關(guān)于x的方程f(x)=α有3個不同實根,求實數(shù)a的取值范圍.
考點:導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)利用導(dǎo)數(shù)與函數(shù)極值的關(guān)系求得a、b值,再利用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間;
(2)利用導(dǎo)數(shù)求得函數(shù)在區(qū)間[-2,2]上的最大值與最小值即可;
(3)把問題轉(zhuǎn)化為求函數(shù)的極值問題解決即可.
解答: 解:(1)∵f′(x)=3x2-6ax+2b,函數(shù)f(x)=x3-3ax2+2bx在x=1處有極小值-1,
∴f(1)=-1,f′(1)=0
∴1-3a+2b=-1,3-6a+2b=0
解得a=
1
3
,b=-
1
2

∴f(x)=x3-x2-x
∴f′(x)=3x2-2x-1
∴由f′(x)=3x2-2x-1>0得x∈(-∞,-
1
3
)∪(1,+∞)
由f′(x)=3x2-2x-1<0得x∈(-
1
3
,1)
∴函數(shù)f(x)的單調(diào)增區(qū)間為:(-∞,-
1
3
),(1,+∞),減區(qū)間為:(-
1
3
,1)
(2)由(1)可得函數(shù)f(x)在[-2,-
1
3
)上是增函數(shù),在[-
1
3
,1)上是減函數(shù),在[1,2]上是增函數(shù)
且f(-2)=-10,f(-
1
3
)=
5
27
,f(1)=-1,f(2)=2
∴函數(shù)f(x)在閉區(qū)間[-2,+2]上的最大值f(2)=2
最小值為f(-2)=-10
(3)由(1)函數(shù)f(x)的單調(diào)增區(qū)間為:(-∞,-
1
3
),(1,+∞),減區(qū)間為:(-
1
3
,1),
∴當(dāng)x=-
1
3
時,函數(shù)f(x)有極大值f(-
1
3
)=
5
27
,當(dāng)x=1時,函數(shù)f(x)有極小值f(1)=-1,
∴若關(guān)于x的方程f(x)=α有3個不同實根,則必有-1<a<
5
27
點評:本題主要考查導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值、最值等知識,考查學(xué)生分析問題,解決問題的能力,屬難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|<
π
2
)的最小正周期為π,且在x=
π
6
處取得最大值.
(1)求函數(shù)f(x)的解析式,并寫出它的單調(diào)遞增區(qū)間
(2)設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且2sinA=sinB,c=3,f(C)=1,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-x+1-a,a∈R.
(1)當(dāng)a=-1時,解關(guān)于x的不等式f(x)>0;
(2)當(dāng)a≤
1
2
時,解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列函數(shù)的值域:
(1)y=
2x-1
x2+2x+2
; 
(2)y=
x-2
x2-3x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A是由適合以下性質(zhì)的函數(shù)f(x)構(gòu)成的:對于任意的m,n∈[-1,1],且m≠n,都有|f(m)-f(n)|≤3|m-n|.
(1)判斷函數(shù)f1(x)=x2是否在集合A中?并說明理由;
(2)設(shè)函數(shù)f(x)=ax2+bx,若對于任意的m,n∈[-1,1],有|a(m+n)+b|≤3恒成立,試求2a+b的取值范圍,并推理判斷f(x)是否在集合A中?
(3)在(2)的條件下,若f(-2)=6,且對于滿足(2)的每個實數(shù)a,存在最大的實數(shù)t,使得當(dāng)x∈[-2,t]時,|f(x)|≤6恒成立,試求用a表示t的表達式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x2-2x-3|,當(dāng)方程f2(x)+mf(x)=0有六個不同的實數(shù)解時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:
sin8°+sin7°sin75°
cos8°-sin7°cos75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(2x+
π
3
)的圖象向右平移
π
12
個單位后,再縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,所得圖象的函數(shù)解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanx=-
3
4
,則tan2x=
 

查看答案和解析>>

同步練習(xí)冊答案