【題目】已知函數(shù)其中

(i)當時,若,則實數(shù)的取值范圍是___________;

(ii) 若存在實數(shù)使得方程有兩個實根,則實數(shù)的取值范圍是_______.

【答案】

【解析】

(1)由分段函數(shù),討論①當x>1時,②當x≤1時,解不等式即可(2)討論①當0<a<1時,②當a≥1時,作圖象觀察即可

i)當a=2時,,解得x<2,

fx)<4,則實數(shù)x的取值范圍是(﹣∞,2);

ii)當0<a<1時,函數(shù)fx)的大致圖象為:

x>1時,函數(shù)fx)=ax為減函數(shù),則0<fx)<f(1)=a,

x≤1時,函數(shù)fx)=x+為增函數(shù),則fx)<f(1)=1+,

此時存在實數(shù)m使得方程fx)﹣m=0有兩個實根,

a>1時,當x>1時,函數(shù)fx)=ax為增函數(shù),則fx)>f(1)=a,

x≤1時,函數(shù)fx)=x+為增函數(shù),則fx)<f(1)=1+,

如圖所示:

若存在實數(shù)m使得方程fx)﹣m=0有兩個實根,

則需要滿足1+a,解得1<a<2,

綜上所述a的取值范圍為(0,1)∪(1,2)

故答案為:(﹣∞,2),(0,1)∪(1,2)

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)討論函數(shù)的單調(diào)性;

2)函數(shù)有兩個極值點,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為提倡節(jié)能減排,同時減輕居民負擔,廣州市積極推進一戶一表工程非一戶一表用戶電費采用合表電價收費標準:一戶一表用戶電費采用階梯電價收取,其11月到次年4月起執(zhí)行非夏季標準如下:

第一檔

第二檔

第三檔

每戶每月用電量單位:度

電價單位:元

例如:某用戶11月用電410度,采用合表電價收費標準,應交電費元,若采用階梯電價收費標準,應交電費元.

為調(diào)查階梯電價是否能到減輕居民負擔的效果,隨機調(diào)查了該市100戶的11月用電量,工作人員已經(jīng)將90戶的月用電量填在下面的頻率分布表中,最后10戶的月用電量單位:度為:88、268370、140、440、420、520、320、230380

1)在答題卡中完成頻率分布表,并繪制頻率分布直方圖;

根據(jù)已有信息,試估計全市住戶11月的平均用電量同一組數(shù)據(jù)用該區(qū)間的中點值作代表;

設某用戶11月用電量為x,按照合表電價收費標準應交元,按照階梯電價收費標準應交元,請用x表示,并求當時,x的最大值,同時根據(jù)頻率分布直方圖估計階梯電價能否給不低于的用戶帶來實惠?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—4:坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為,其中為參數(shù),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,點的極坐標為,直線的極坐標方程為.

(1)求直線的直角坐標方程與曲線的普通方程;

(2)若是曲線上的動點,為線段的中點.求點到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究所計劃利用神七宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品AB,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用和預計產(chǎn)生收益來決定具體安排,通過調(diào)查,有關數(shù)據(jù)如表:


產(chǎn)品A()

產(chǎn)品B()


研制成本與塔載
費用之和(萬元/)

20

30

計劃最大資
金額300萬元

產(chǎn)品重量(千克/)

10

5

最大搭載
重量110千克

預計收益(萬元/)

80

60


試問:如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預計收益達到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若,求曲線在點處的切線方程;

(Ⅱ)若,判斷函數(shù)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次數(shù)學測驗共有12道選擇題,每道題共有四個選項,且其中只有一個選項是正確的,評分標準規(guī)定:每選對1道題得5分,不選或選錯得0分. 在這次數(shù)學測驗中,考生甲每道選擇題都按照規(guī)則作答,并能確定其中有9道題能選對;其余3道題無法確定正確選項,在這3道題中,恰有2道能排除兩個錯誤選項,另1題只能排除一個錯誤選項. 若考生甲做這3道題時,每道題都從不能排除的選項中隨機挑選一個選項作答,且各題作答互不影響.在本次測驗中,考生甲選擇題所得的分數(shù)記為

1)求的概率;

2)求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學宣傳部組織了這樣一個游戲項目:甲箱子里面有3個紅球,2個白球,乙箱子里面有1個紅球,2個白球,這些球除了顏色以外,完全相同。每次游戲需要從這兩個箱子里面各隨機摸出兩個球.

(1)設在一次游戲中,摸出紅球的個數(shù)為,求分布列.

(2)若在一次游戲中,摸出的紅球不少于2個,則獲獎.

①求一次游戲中,獲獎的概率;

②若每次游戲結束后,將球放回原來的箱子,設4次游戲中獲獎次數(shù)為,求的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)有6人參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇,為增加趣味性,主辦方制作了一款電腦軟件:按下電腦鍵盤“”鍵則會出現(xiàn)模擬拋兩枚質(zhì)地均勻的骰子的畫面,若干秒后在屏幕上出現(xiàn)兩個點數(shù),并在屏幕的下方計算出的值.主辦方現(xiàn)規(guī)定:每個人去按“”鍵,當顯示出來的小于時則參加甲游戲,否則參加乙游戲.

(1)求這6個人中恰有2人參加甲游戲的概率;

(2)用、分別表示這6個人中去參加甲,乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學期望.

查看答案和解析>>

同步練習冊答案