1.若$\frac{2+ai}{1+i}$=x+yi(a,x,y均為實(shí)數(shù)),則x-y=( 。
A.0B.1C.2D.a

分析 利用復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等即可得出.

解答 解:∵$\frac{2+ai}{1+i}$=x+yi(a,x,y∈R),
∴2+ai=x-y+(x+y)i,
∴x-y=2.
故選:C.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、復(fù)數(shù)相等,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.同時(shí)拋擲兩枚質(zhì)地均勻的骰子一次,在兩枚骰子點(diǎn)數(shù)不同的條件下,兩枚骰子至少有一枚出現(xiàn)6點(diǎn)的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.$\int_0^5{(2x-4)dx}$=( 。
A.5B.4C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若兩曲線y=x2-1與y=alnx-1存在公切線,則正實(shí)數(shù)a的取值范圍是(0,2e).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)是以2為周期的奇函數(shù),已知x∈(0,1)時(shí),f(x)=2x,則f(x)在(2017,2018)上是( 。
A.增函數(shù),且f(x)>0B.減函數(shù),且f(x)<0C.增函數(shù),且f(x)<0D.減函數(shù),且f(x)>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.設(shè)z=$\frac{1}{1+i}$+i(i為虛數(shù)單位),則|z|=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若x∈($\frac{1}{e}$,1),設(shè)a=lnx,b=2${\;}^{ln\frac{1}{x}}$,c=elnx,則a,b,c的大小關(guān)系為( 。
A.c>b>aB.b>a>cC.a>b>cD.b>c>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.某押運(yùn)公司為保障押運(yùn)車輛運(yùn)行安全,每周星期一到星期五對(duì)規(guī)定尾號(hào)的押運(yùn)車輛進(jìn)行保養(yǎng)維護(hù),具體保養(yǎng)安排如下:
日期星期一星期二星期三星期四星期五
保養(yǎng)車輛尾號(hào)0和51和62和73和84和9
該公司下屬的某分公司有車牌尾號(hào)分別為0、5、6的汽車各一輛,分別記為A、B、C.已知在非保養(yǎng)日,根據(jù)工作需要每輛押運(yùn)車每天可能出車或不出車,A、B、C三輛車每天出車的概率依次為$\frac{2}{3}$、$\frac{2}{3}$、$\frac{1}{2}$,且A、B、C三車是否出車相互獨(dú)立;在保養(yǎng)日,保養(yǎng)車輛不能出車.
(Ⅰ)求該分公司在星期四至少有一輛車外出執(zhí)行押運(yùn)任務(wù)的概率;
(Ⅱ)設(shè)X表示該分公司在星期一與星期二兩天的出車臺(tái)數(shù)之和,求X的分布列及其數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列說(shuō)法正確的是( 。
A.若|$\vec a|>|\vec b|$,$\vec a>\vec b$B.若$|\vec a|=|\vec b|$,$\vec a=\vec b$
C.若$\vec a=\vec b$,則$\vec a∥\vec b$D.若$\vec a≠\vec b$,則$\vec a$與$\vec b$不是共線向量

查看答案和解析>>

同步練習(xí)冊(cè)答案