2.在平面直角坐標系中,定義d(P,Q)=|x1-x2|+|y1-y2|為兩點P(x1,y1),Q(x2,y2)之間的“折線距離”.則下列命題中:
①若A(-1,3),B(1,0),則有d(A,B)=5.
②到原點的“折線距離”等于1的所有點的集合是一個圓.
③若C點在線段AB上,則有d(A,C)+d(C,B)=d(A,B).
④到M(-1,0),N(1,0)兩點的“折線距離”相等的點的軌跡是直線x=0.
真命題的個數(shù)為(  )
A.1B.2C.3D.4

分析 先根據(jù)折線距離的定義分別表示出所求的集合,然后根據(jù)集合中絕對值的性質(zhì)進行判定即可.

解答 解:若A(-1,3),B(1,0),則有d(A,B)=|-1-1|+|3-0|=5,故①正確;
到原點的“折線距離”等于1的點的集合{(x,y)||x|+|y|=1},是一個正方形,故②錯誤;
若點C在線段AB上,設(shè)C點坐標為(x0,y0),x0在x1、x2之間,y0在y1、y2之間,
則d(A,C)+d(C,B)=|x0-x1|+|y0-y1|+|x2-x0|+|y2-y0|=|x2-x1|+|y2-y1|=d(A,B)成立,故③成立;
到M(-1,0),N(1,0)兩點的“折線距離”相等點的集合是{(x,y)||x+1|+|y|=|x-1|+|y|},
由|x+1|=|x-1|,解得x=0,
∴到M(-1,0),N(1,0)兩點的“折線距離”相等的點的軌跡方程是x=0,即④正確;
綜上知,正確的命題為①③④,共3個.
故選:C.

點評 本題主要考查了“折線距離”的定義,考查分析問題、解決問題的能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,正方體ABCD-A1B1C1D1中,E,F(xiàn),H分別為A1B1,B1C1,CC1的中點.
(Ⅰ)證明:BE⊥AH;
(Ⅱ)在棱D1C1上是否存在一點G,使得AG∥平面BEF?若存在,求出點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.命題“若x=1,則x2-3x+2=0”的逆否命題是( 。
A.若x≠1,則x2-3x+2≠0B.若x2-3x+2=0,則x=1
C.若x2-3x+2=0,則x≠1D.若x2-3x+2≠0,則x≠1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.8+2πB.8+3πC.10+2πD.10+3π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知數(shù)列{an}中,前n項和為Sn,且${S_n}=\frac{n+2}{3}{a_n}$,則$\frac{a_n}{{{a_{n-1}}}}$的最大值為( 。
A.-3B.-1C.3D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.下列命題正確的是( 。
A.若lna-lnb=a-3b,則a<b<0B.若lna-lnb=a-3b,則0<a<b
C.若lna-lnb=3b-a,則a>b>0D.若lna-lnb=3b-a,則0>a>b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知i為虛數(shù)單位,則|3+2i|=(  )
A.$\sqrt{5}$B.$\sqrt{7}$C.$\sqrt{13}$D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,${a_{n+1}}•{a_n}=\frac{1}{n}$(n∈N*),
(Ⅰ) 證明:$\frac{{{a_{n+2}}}}{n}=\frac{a_n}{n+1}$;
(Ⅱ) 證明:$2({\sqrt{n+1}-1})≤\frac{1}{{2{a_3}}}+\frac{1}{{3{a_4}}}+…+\frac{1}{{(n+1){a_{n+2}}}}≤n$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.同時擲兩個質(zhì)地均勻的骰子,向上點數(shù)之積為12的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{9}$C.$\frac{1}{18}$D.$\frac{1}{36}$

查看答案和解析>>

同步練習冊答案