10.已知等比數(shù)列{an}的S3=7,若4a1,2a2,a3成等差數(shù)列,則a1=( 。
A.1B.2C.3D.4

分析 設(shè)出等比數(shù)列的公比,由題意列關(guān)于首項(xiàng)和公比的方程組求解.

解答 解:設(shè)等比數(shù)列{an}的公比為q,
由題意,$\left\{\begin{array}{l}{{a}_{1}(1+q+{q}^{2})=7}\\{4{a}_{1}q=4{a}_{1}+{a}_{1}{q}^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{q=2}\end{array}\right.$.
故選:A.

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式,考查了等比數(shù)列的前n項(xiàng)和,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知|$\overrightarrow{a}$|=2,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,則|$\overrightarrow a$-$\overrightarrow b$|=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求下列函數(shù)的值域.
(1)y=$\frac{3sinx-1}{2sinx+1}$          
(2)y=sin2x+sinx+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.一家新技術(shù)公司計(jì)劃研制一個(gè)名片管理系統(tǒng),希望系統(tǒng)能夠具備以下功能:
(1)用戶管理:能修改密碼,顯示用戶信息,修改用戶信息.
(2)用戶登錄.
(3)名片管理:能夠?qū)γM(jìn)行刪除、添加、修改、查詢.
(4)出錯(cuò)信息處理.
請(qǐng)根據(jù)這些要求畫出該系統(tǒng)的結(jié)構(gòu)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點(diǎn)P(0,f(0))處的切線為y=x.
(1)求函數(shù)f(x)的解析式;
(2)若關(guān)于x的方程f(x)=k有兩個(gè)不等實(shí)根x1,x2,求實(shí)數(shù)k的取值范圍;
(3)在(2)的條件下,若x0=$\frac{{{x_1}+{x_2}}}{2}$,求證:f'(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知AB是圓C:(x-1)2+y2=1的直徑,點(diǎn)P為直線x-y+1=0上任意一點(diǎn),則$\overrightarrow{PA}•\overrightarrow{PB}$的最小值是(  )
A.$\sqrt{2}$-1B.$\sqrt{2}$C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=2sinxcosx-2$\sqrt{3}$cos2x+$\sqrt{3}$.
(1)求函數(shù)f(x)的對(duì)稱中心坐標(biāo);
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=x2+ax+blnx(a,b∈R).
(1)若b=1且f(x)在x=1處取得極值,求實(shí)數(shù)a的值及單調(diào)區(qū)間;
(2)若b=-1,f(x)≥0對(duì)x>0恒成立,求a的取值范圍;
(3)若a+b≥-2且f(x)在(0,+∞)上存在零點(diǎn),求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知變量$f(x)=Asin(ωx+φ)\;(A>0,ω>0,|φ|<\frac{π}{2})$的最小值為-2,最小正周期為π,f(0)=1,則f(x)在區(qū)間[0,π]上的單調(diào)遞增區(qū)間為( 。
A.$[{0,\frac{π}{6}}]$B.$[{\frac{π}{6},\frac{2π}{3}}]$C.$[{\frac{2π}{3},π}]$D.$[{0,\frac{π}{6}}]$和$[{\frac{2π}{3},π}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案