分析 (1)求導(dǎo)數(shù),利用函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點(diǎn)P(0,f(0))處的切線為y=x,求出a,b,即可求函數(shù)f(x)的解析式;
(2)確定函數(shù)f(x)的最大值為f(1)=$\frac{1}{e}$,x→+∞,f(x)→0,x→-∞,x<0,利用關(guān)于x的方程f(x)=k有兩個(gè)不等實(shí)根x1,x2,即可求實(shí)數(shù)k的取值范圍;
(3)不妨設(shè)0<x1<1<x2,先證明f(1+t)>f(1-t),對(duì)t∈(0,1)恒成立,再利用x>1,f′(x)<0,函數(shù)f(x)單調(diào)遞減,即可證明結(jié)論.
解答 (1)解:由題意,f′(x)=$\frac{a-ax}{{e}^{x}}$,
∵函數(shù)f(x)=$\frac{ax}{e^x}$+b的圖象在點(diǎn)P(0,f(0))處的切線為y=x,
∴f(0)=b=0,f′(0)=a=1,
∴f(x)=$\frac{x}{{e}^{x}}$;
(2)解:由(1)f′(x)=$\frac{1-x}{{e}^{x}}$,x<1,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
x>1,f′(x)<0,函數(shù)f(x)單調(diào)遞減,
∴函數(shù)f(x)的最大值為f(1)=$\frac{1}{e}$,
∵x→+∞,f(x)→0,x→-∞,x<0,關(guān)于x的方程f(x)=k有兩個(gè)不等實(shí)根x1,x2,
∴0<k<$\frac{1}{e}$;
(3)證明:不妨設(shè)0<x1<1<x2,先證明f(1+t)>f(1-t),對(duì)t∈(0,1)恒成立,
只要證明(1+t)e-(1+t)>(1-t)e-(1-t),
只要證明ln(1+t)-ln(1-t)-2t>0.
令g(t)=ln(1+t)-ln(1-t)-2t,t∈(0,1)
則g′(t)=$\frac{2{t}^{2}}{1-{t}^{2}}$>0,
∴g(t)在(0,1)上單調(diào)遞增,
∴g(t)>g(0)=0.
∵0<x1<1<x2,
∴2-x1>1,
∴f(x2)=f(x1)<f(2-x1),
∵x>1,f′(x)<0,函數(shù)f(x)單調(diào)遞減,
∴x2>2-x1,
∴x1+x2>2,
∴x0=$\frac{{{x_1}+{x_2}}}{2}$>1,∴f'(x0)<0.
點(diǎn)評(píng) 本小題主要考查函數(shù)、導(dǎo)數(shù)等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、分類與整合思想、函數(shù)與方程思想、數(shù)形結(jié)合思想等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{7}$ | B. | $\frac{5}{16}$ | C. | $\frac{5}{8}$ | D. | $\frac{5}{14}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | c<b<a | B. | b<a<c | C. | c<a<b | D. | a<c<b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,3) | B. | [0,3] | C. | [1,2) | D. | [1,2] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com