在△ABC中,已知AB=3,AC=2,P是BC中垂線上任意一點(diǎn),則
PA
BC
=
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:圖所示,由于P是BC中垂線上任意一點(diǎn),可得
PO
BC
=0,
OA
=-
1
2
(
AB
+
AC
)
BC
=
AC
-
AB
.再利用數(shù)量積運(yùn)算性質(zhì)即可得出.
解答: 解:如圖所示,
∵P是BC中垂線上任意一點(diǎn),
PO
BC
=0,
OA
=-
1
2
(
AB
+
AC
)

BC
=
AC
-
AB

PA
BC
=(
PO
+
OA
)•
BC

=
OA
BC

=-
1
2
(
AB
+
AC
)•(
AC
-
AB
)

=-
1
2
(
AC
2
-
AB
2
)

=-
1
2
(22-32)

=
5
2

故答案為:
5
2
點(diǎn)評(píng):本題考查了向量的運(yùn)算法則、數(shù)量積運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:(2
1
4
 
3
2
+0.1-2+(
1
27
 
1
3
+2π0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一袋中裝有大小相同,且分別標(biāo)有數(shù)字1,2,3,4的4個(gè)小球,若每次從袋中取出一個(gè)小球,不放回,則恰好第三次取到標(biāo)號(hào)為3的球的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖1所示的四邊形ABCD中,∠ABD=∠BDC=
π
2
,∠C=
π
6
,AB=BD=2.現(xiàn)將△ABD沿BD翻折,如圖2所示.
(Ⅰ)若二面角A-BD-C為直二面角,求證:AB⊥DC;
(Ⅱ)設(shè)E為線段BC上的點(diǎn),當(dāng)△ABE為等邊三角形時(shí),求二面角A-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,拋物線C1:y2=4x,圓C2:(x-1)2+y2=1,過拋物線焦點(diǎn)的直線l
交C1于A,D兩點(diǎn),交C2于B,C兩點(diǎn).
(Ⅰ)若|AB|+|CD|=2|BC|,求直線l的方程;
(Ⅱ)求|AB|•|CD|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+2x+sinx(x∈R),f(x1)+f(x2)>0,則下列不等式正確的是( 。
A、x1>x2
B、x1<x2
C、x1+x2<0
D、x1+x2>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
nx
x+m
的值域?yàn)椋?∞,1)∪(1,+∞),且f(2)=2.
(1)求f(x)的解析式;
(2)解不等式f(x)<
2x2
x-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,0)與向量
b
=(-1,
3
),則向量
a
b
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果命題“¬P”為假,命題“P∧q”為假,那么則有(  )
A、q為真
B、p∨q為假
C、p∨q為真
D、(¬p)∧(¬q)為真

查看答案和解析>>

同步練習(xí)冊(cè)答案