6.已知雙曲線與橢圓$\frac{x^2}{16}+\frac{y^2}{3}=1$有相同的焦點,且其中一條漸近線為$y=\frac{3}{2}x$,則該雙曲線的標準方程是$\frac{x^2}{4}-\frac{y^2}{9}=1$.

分析 求出橢圓的焦點坐標,得到雙曲線的焦點坐標,利用雙曲線的漸近線方程,求出a,b,即可得到雙曲線方程.

解答 解:雙曲線與橢圓$\frac{x^2}{16}+\frac{y^2}{3}=1$有相同的焦點($±\sqrt{13}$,0),焦點坐標在x軸,雙曲線的一條漸近線為$y=\frac{3}{2}x$,
可得$\frac{a}$=$\frac{3}{2}$,a2+b2=13,可得a2=4,b2=9.
所求雙曲線方程為:$\frac{x^2}{4}-\frac{y^2}{9}=1$.
故答案為:$\frac{x^2}{4}-\frac{y^2}{9}=1$.

點評 本題考查橢圓的簡單性質(zhì)以及雙曲線的簡單性質(zhì)的應用,雙曲線方程的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

16.已知函數(shù)f(x)=$\frac{2x-3}{x+1}$的圖象關于點P中心對稱,則點P的坐標是(-1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.點P從點O出發(fā),按逆時針方向沿周長為l的正方形運動一周,記O,P兩點連線的距離y與點P走過的路程x為函數(shù)f(x),則y=f(x)的圖象大致是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.如圖,網(wǎng)格紙上每個小正方形的邊長為1,若粗線畫出的是某幾何體的三視圖,則此幾何體的體積為10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知空間兩點A(3,3,1),B(-1,1,5),則線段AB的長度為( 。
A.6B.$2\sqrt{6}$C.$4\sqrt{3}$D.$2\sqrt{14}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\sqrt{x}sinx$,則f'(π)=(  )
A.$\sqrt{π}$B.$-\sqrt{π}$C.$\frac{{\sqrt{π}}}{2π}$D.$\frac{{\sqrt{2π}}}{2π}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.閱讀如圖的程序框圖,運行相應的程序,則輸出的T的值為( 。
A.57B.120C.183D.247

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.直線y=kx+3(k≠0)與圓(x-3)2+(y-2)2=4相交于A、B兩點,若$|AB|=2\sqrt{3}$,則k的值為$-\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.從集合{a,b,c,d,e}的所有子集中,任取一個,所取集合恰是集合{a,b,c}子集的概率是(  )
A.$\frac{3}{5}$B.$\frac{2}{5}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

同步練習冊答案