分析 (1)推導出BC⊥PA,BC⊥AB,由此能證明BC⊥平面PAB.
(2)取AD中點G,連結(jié)MG、NG,推導出平面MNG∥平面PAB,由此能證明MN∥面PAB.
解答 證明:(1)∵PA⊥面ABCD,BC?平面ABCD,
∴BC⊥PA,
∵面ABCD為矩形,∴BC⊥AB,
∵PA∩AB=A,∴BC⊥平面PAB.
(2)取AD中點G,連結(jié)MG、NG,
∵M為PD中點,N為BC中點,
∴MG∥PA,NG∥AB,
∵MG∩NG=G,AB∩AP=A,
MG、NG?平面MNG,PA、AB?平面PAB,
∴平面MNG∥平面PAB,
∵MN?平面MNG,∴MN∥面PAB.
點評 本題考查線面垂直、線面平行的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查推理論證能力、空間想象能力、運算求解能力,考查函數(shù)與方程思想、化歸與轉(zhuǎn)化思想、數(shù)形結(jié)合思想,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $k≥\frac{3}{4}或k≤-4$ | B. | $k≥\frac{3}{4}或k≤-\frac{1}{4}$ | C. | -4≤k≤$\frac{3}{4}$ | D. | $\frac{3}{4}$≤k≤4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | Ax+By+(C1-2C2)=0 | B. | Ax+By+(C2-2C1)=0 | C. | Ax+By+(2C2-C1)=0 | D. | Ax+By+(2C1-C2)=0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $18\sqrt{2}$ | B. | $36\sqrt{2}$ | C. | 18 | D. | 36 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-1,1} | B. | {1,3} | C. | {-1,1,3} | D. | {-3,-1,1} |
查看答案和解析>>
科目:高中數(shù)學 來源:2015-2016學年四川省高二上學期期中考數(shù)學試卷(解析版) 題型:解答題
某村計劃建造一個室內(nèi)面積為800的矩形蔬菜溫室.在溫室內(nèi),沿左右兩側(cè)與后側(cè)內(nèi)墻各保留1寬的通道,沿前側(cè)內(nèi)墻保留3寬的空地.當矩形溫室的邊長各為多少時?蔬菜的種植面積最大,最大種植面積是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com