9.已知f(x)是定義在R上周期為4的奇函數(shù),當(dāng)x∈[-2,0)時(shí),f(x)=2x+log2(-x),則f(2017)=( 。
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

分析 由已知中f(x)是定義在R上周期為4的奇函數(shù),可得f(2017)=f(1)=-f(-1),進(jìn)而得到答案.

解答 解:∵f(x)是定義在R上周期為4的奇函數(shù),
∴f(2017)=f(1)=-f(-1),
由當(dāng)x∈[-2,0)時(shí),f(x)=2x+log2(-x),
∴f(-1)=$\frac{1}{2}$,
故f(2017)=-$\frac{1}{2}$,
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的周期性,函數(shù)的奇偶性,函數(shù)求值,難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若函數(shù)f(x)=g(x)+x2為奇函數(shù),且f(1)=1,則函數(shù)g(x)的解析式可能為( 。
A.y=x3B.y=2x3-x2C.y=2x3+x2D.y=x5-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.設(shè)關(guān)于x的不等式|f(x)|+|g(x)|<a的解集為A,關(guān)于x的不等式|f(x)+g(x)|<a的解集為B,則集合A,B滿足( 。
A.A⊆BB.B⊆AC.B?AD.A?B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn)和虛軸上的一個(gè)端點(diǎn)分別為F,A,點(diǎn)P為雙曲線C左支上一點(diǎn),若△APF周長(zhǎng)的最小值為6b,則雙曲線C的離心率為( 。
A.$\frac{\sqrt{56}}{8}$B.$\frac{\sqrt{85}}{7}$C.$\frac{\sqrt{85}}{6}$D.$\frac{\sqrt{13}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.如圖,一個(gè)三棱柱形容器中盛有水,且側(cè)棱AA1=8.若側(cè)面AA1B1B水平放置時(shí),液面恰好過(guò)AC,BC,A1C1,B1C1的中點(diǎn).則當(dāng)?shù)酌鍭BC水平放置時(shí),液面高為(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在區(qū)間[1,7]上任取一個(gè)數(shù),這個(gè)數(shù)在區(qū)間[5,8]上的概率為(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x+1)=x2-x,則f(2)=(  )
A.-2B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,S表示△ABC的面積,若S=$\frac{1}{4}({{b^2}+{c^2}-{a^2}})$,則∠A=(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.函數(shù)$y=\sqrt{{{log}_{\frac{1}{3}}}x}$的定義域是(0,1].

查看答案和解析>>

同步練習(xí)冊(cè)答案