數(shù)列1,2+3,4+5+6,7+8+9+10,…,的一個通項公式an=________.

答案:
解析:

  

  前n項一共有1+2+3+…+n=個自然數(shù),設(shè)Sn=1+2+3+…+n=,則an


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

對于各項均為整數(shù)的數(shù)列{an},如果滿足ai+i(i=1,2,3,…)為完全平方數(shù),則稱數(shù)列{an}具有“P性質(zhì)”;
不論數(shù)列{an}是否具有“P性質(zhì)”,如果存在與{an}不是同一數(shù)列的{bn},且{bn}同時滿足下面兩個條件:①b1,b2,b3,…,bn是a1,a2,a3,…,an的一個排列;②數(shù)列{bn}具有“P性質(zhì)”,則稱數(shù)列{an}具有“變換P性質(zhì)”.
(Ⅰ)設(shè)數(shù)列{an}的前n項和Sn=
n3
(n2-1)
,證明數(shù)列{an}具有“P性質(zhì)”;
(Ⅱ)試判斷數(shù)列1,2,3,4,5和數(shù)列1,2,3,…,11是否具有“變換P性質(zhì)”,具有此性質(zhì)的數(shù)列請寫出相應(yīng)的數(shù)列{bn},不具此性質(zhì)的說明理由;
(Ⅲ)對于有限項數(shù)列A:1,2,3,…,n,某人已經(jīng)驗證當n∈[12,m2](m≥5)時,數(shù)列A具有“變換P性質(zhì)”,試證明:當n∈[m2+1,(m+1)2]時,數(shù)列A也具有“變換P性質(zhì)”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果有窮數(shù)列a1,a2,…,an(n∈N*)滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,3,2,1 和數(shù)列1,2,3,4,3,2,1都為“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,…,2m-1依次為該數(shù)列中連續(xù)的前m項,則數(shù)列{bn}的前2009項和S2009所有可能為:①22009-1  ②2(22009-1)③3•2m-1-22m-2010-1  ④2m+1-22m-2009-1;其中正確的有( 。﹤.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于各項均為整數(shù)的數(shù)列{an},如果ai+i(i=1,2,3,…)為完全平方數(shù),則稱數(shù)列{an}具有“P性質(zhì)”.不論數(shù)列{an}是否具有“P性質(zhì)”,如果存在與{an}不是同一數(shù)列的{bn},且{bn}同時滿足下面兩個條件:
①b1,b2,b3,…,bn是a1,a2,a3,…,an的一個排列;
②數(shù)列{bn}具有“P性質(zhì)”,則稱數(shù)列{an}具有“變換P性質(zhì)”.
下面三個數(shù)列:
①數(shù)列{an}的前n項和Sn=
n3
(n2-1)

②數(shù)列1,2,3,4,5;
③1,2,3,…,11.
具有“P性質(zhì)”的為
;具有“變換P性質(zhì)”的為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果有窮數(shù)列a1a2,…,an(n∈N*)滿足條件:a1=an,a2=an-1,…,an=a1,即ai=an-i+1,(i=1,2,…,n)我們稱其為“對稱數(shù)列”.例如:數(shù)列1,2,3,3,2,1 和數(shù)列1,2,3,4,3,2,1都為“對稱數(shù)列”.已知數(shù)列{bn}是項數(shù)不超過2m(m>1,m∈N*)的“對稱數(shù)列”,并使得1,2,22,…,2m-1依次為該數(shù)列中連續(xù)的前m項,則數(shù)列{bn}的前2009項和S2009所有可能的取值的序號為( 。
①22009-1   ②2(22009-1)③3•2m-1-22m-2010-1   ④2m+1-22m-2009-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于數(shù)列{An}:A1,A2,A3,…,An,若不改變A1,僅改變A2,A3,…,An中部分項的符號,得到的新數(shù)列{an}稱為數(shù)列{An}的一個生成數(shù)列.如僅改變數(shù)列1,2,3,4,5的第二、三項的符號可以得到一個生成數(shù)列1,-2,-3,4,5.已知數(shù)列{an}為數(shù)列{
1
2n
}(n∈N*)
的生成數(shù)列,Sn為數(shù)列{an}的前n項和.
(1)寫出S3的所有可能值;
(2)若生成數(shù)列{an}滿足:S3n=
1
7
(1-
1
8n
)
,求{an}的通項公式;
(3)證明:對于給定的n∈N*,Sn的所有可能值組成的集合為:{x|x=
2m-1
2n
,m∈N*,m≤2n-1}

查看答案和解析>>

同步練習冊答案