分析 (I)由正弦定理化簡(jiǎn)已知等式可得2cosAsinA=sinA,結(jié)合sinA≠0,可求cosA=$\frac{1}{2}$,結(jié)合范圍A∈(0,π),可求A的值.
(II)由△ABC的面積為$\frac{{\sqrt{3}}}{4}$,求出bc,利用c2+abcosC+a2=4,得出3a2+b2+c2=8,結(jié)合余弦定理求a.
解答 解:(I)由正弦定理可知,2cosA(sinBcosC+sinCcosB)=sinA,
即2cosAsinA=sinA,
因?yàn)锳∈(0,π),
所以sinA≠0,
所以2cosA=1,即cosA=$\frac{1}{2}$
又A∈(0,π),
所以A=$\frac{π}{3}$;
(II)∵△ABC的面積為$\frac{{\sqrt{3}}}{4}$,
∴$\frac{1}{2}bc×\frac{\sqrt{3}}{2}$=$\frac{{\sqrt{3}}}{4}$,∴bc=1
∵c2+abcosC+a2=4,∴3a2+b2+c2=8,
∵a2=b2+c2-bc
∴4a2=7,∴a=$\frac{\sqrt{7}}{2}$.
點(diǎn)評(píng) 本題主要考查了正弦定理,余弦定理,兩角差的正弦函數(shù)公式在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{2}{7}$ | C. | $\frac{4}{7}$ | D. | $\frac{6}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | i | B. | -i | C. | 1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
經(jīng)濟(jì)損失不超過(guò)4000元 | 經(jīng)濟(jì)損失超過(guò)4000元 | 總計(jì) | |
捐款超過(guò)500元 | 60 | ||
捐款不超過(guò)500元 | 10 | ||
總計(jì) |
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $4\sqrt{2}$ | B. | $\sqrt{31}$ | C. | $\sqrt{33}$ | D. | $4\sqrt{2}-1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com