9.已知f(x)=ex(x2+x+1),定義f1(x)=f'(x),f2(x)=[f1(x)]′,…,fn+1(x)=[fn(x)]′,n∈N.經(jīng)計算:f1(x)=ex(x2+3x+2);f2(x)=ex(x2+5x+5);f3(x)=ex(x2+7x+10),…照此規(guī)律,則fn(x)=fn(x)=ex[x2+(2n+1)x+n2+1].

分析 根據(jù)題意,x的系數(shù)成等差數(shù)列,規(guī)律為2n+1,常數(shù)項為n2+1,即可得出結(jié)論.

解答 解:∵f1(x)=ex(x2+3x+2);f2(x)=ex(x2+5x+5);f3(x)=ex(x2+7x+10),…,
∴照此規(guī)律,fn(x)=ex[x2+(2n+1)x+n2+1],
故答案為fn(x)=ex[x2+(2n+1)x+n2+1].

點評 本題考查了導數(shù)的運算法則和歸納推理的問題,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.在一次水稻試驗田驗收活動中,將甲、乙兩種水稻隨機抽取各6株樣品,單株籽粒數(shù)制成如圖所示的莖葉圖:
(1)一粒水稻約為0.1克,每畝水稻約為6萬株,估計甲種水稻畝產(chǎn)約為多少公斤?
(2)如從甲品種的6株中任選2株,記選到超過187粒的株數(shù)為ξ,求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.數(shù)列{an}的前n項和是Sn,a1=1,2Sn=an+1(n∈N+),則an=$\left\{\begin{array}{l}{1,n=1}\\{2{•3}^{n-2},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.一組統(tǒng)計數(shù)據(jù)x1,x2,x3,x4,x5與另一組統(tǒng)計數(shù)據(jù)2x1+3,2x2+3,2x3+3,2x4+3,2x5+3相比較(  )
A.標準差相同B.中位數(shù)相同C.平均數(shù)相同D.以上都不相同

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知P={x|x2+2x-3<0},Q={-2,-1,0,1,2},則P∩Q=(  )
A.{-1,0,1}B.{-2,-1,0,1}C.{-2,-1,0}D.{-1,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知雙曲線Γ:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1({a>0,b>0})$的上焦點為F1(0,c)(c>0),下焦點為F2(0,-c)(c>0),過點F1作圓x2+y2-$\frac{2c}{3}y+\frac{a^2}{9}$=0的切線與圓相切于點D,與雙曲線下支交于點M,若MF2⊥MF1,則雙曲線Γ的漸進線方程為( 。
A.4x±y=0B.x±4y=0C.2x±y=0D.x±2y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知約束條件為$\left\{\begin{array}{l}2x-y-6≤0\\ x-y+2≥0\end{array}\right.$,若目標函數(shù)z=kx+y僅在交點(8,10)處取得最小值,則k的取值范圍為( 。
A.(-2,-1)B.(-∞,-2)∪(-1,+∞)C.(-∞,-2)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosA(ccosB+bcosC)=a.
(I)求A;
(II)若△ABC的面積為$\frac{{\sqrt{3}}}{4}$,且c2+abcosC+a2=4,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知$cos({\frac{2}{3}π-2θ})=-\frac{7}{9}$,則$sin({\frac{π}{6}+θ})$的值等于( 。
A.$\frac{1}{3}$B.$±\frac{1}{3}$C.$-\frac{1}{9}$D.$\frac{1}{9}$

查看答案和解析>>

同步練習冊答案