觀察下列各等式(i為虛數(shù)單位):
(cos1+isin1)(cos2+isin2)=cos3+isin3;
(cos3+isin3)(cos5+isin5)=cos8+isin8;
(cos4+isin4)(cos7+isin7)=cos11+isin11;
(cos6+isin6)(cos6+isin6)=cos12+isin12.
記f(x)=cosx+isinx.
(1)猜想出一個用 f(x),f(y),f(x+y)表示的反映一般規(guī)律的等式,并證明其正確性;
(2)根據(jù)(1)的結(jié)論推出f n(x)的表達式;
(3)利用上述結(jié)論計算:(cos
π
12
+isin
π
12
)•(cos
12
+isin
12
)+(
3
2
+
1
2
i)2007
考點:歸納推理
專題:推理和證明
分析:(1)由已知中的式子,發(fā)現(xiàn)若f(x)=cosx+isinx,則f(x)f(y)=f(x+y),進而利用復數(shù)的運算法則和和差角公式,可證得結(jié)論;
(2)由(1)的結(jié)論,根據(jù)乘方是乘數(shù)相等的乘法,可得fn(x)=f(x)•f(x)…f(x)=f(nx)=cosnx+isinnx;
(3)由(2)中結(jié)論,結(jié)合特殊角的三角函數(shù),可求出(3)中式子的值.
解答: 解:(1)f(x)f(y)=f(x+y).…..(2分)
證明:f(x)f(y)=(cos x+isin x)(cos y+isin y)
=(cos xcos y-sin xsin y)+(sin xcos y+cos xsin y)i
=cos(x+y)+isin(x+y)
=f(x+y).…ks5u…(5分)
(2)∵f(x)f(y)=f(x+y),
∴fn(x)=f(x)•f(x)…f(x)=f(nx)=cosnx+isinnx.….(8分)
(3)(cos
π
12
+isin
π
12
)•(cos
12
+isin
12
)+(
3
2
+
1
2
i)2007
=(cos
π
2
+isin
π
2
)+(cos
2007π
6
+isin
2007π
6

=i+(cos
669π
2
+isin
669π
2
)=2i…(12分)
點評:歸納推理的一般步驟是:(1)通過觀察個別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}是遞增數(shù)列,an=n2+λn,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知曲線C1
x=1+
2
cost
y=1+
2
sint
(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為p=2sinθ.
(1)把C1的參數(shù)方程化為極坐標方程;
(2)求C1與C2交點的極坐標(p≥0,0≤θ<2π).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是直線l:3x-4y+5=0上的動點,定點Q的坐標為(1,1),求線段PQ長的最小值及取得最小值時P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖1,在平面內(nèi),ABCD是AB=2,BC=
2
的矩形,△PAB是正三角形,將△PAB沿AB折起,使PC⊥BD,如圖2,E為AB的中點,設(shè)直線l過點C且垂直于矩形ABCD所在平面,點F是直線l上的一個動點,且與點P位于平面ABCD的同側(cè).

(1)求證:PE⊥平面ABCD;
(2)設(shè)二面角F-PB-D的大小為θ,若θ=
π
4
,求線段CF的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=(sinx+cosx)2+2cos2x,求:
(1)函數(shù)y的最大值,最小值及最小正周期;
(2)函數(shù)y的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3
sin2x-2cos2x-1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知c=
3
,f(C)=0,sinB=2sinA,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是R上的奇函數(shù),當x∈(-∞,0)時,f(x)=-x(1+x),求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=-x2+ax-3在區(qū)間(-∞,4)上是單調(diào)遞增的,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案