已知函數(shù)f(x)=
3
sin2x-2cos2x-1,x∈R.
(Ⅰ)求函數(shù)f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的對邊分別為a,b,c,已知c=
3
,f(C)=0,sinB=2sinA,求a,b的值.
考點(diǎn):余弦定理,兩角和與差的正弦函數(shù),三角函數(shù)的周期性及其求法
專題:解三角形
分析:(Ⅰ)f(x)解析式利用二倍角的余弦函數(shù)公式化簡,整理后利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),找出ω的值,代入周期公式求出函數(shù)f(x)的最小正周期,利用正弦函數(shù)的值域確定出f(x)最小值即可;
(Ⅱ)由f(C)=0及第一問化簡得到的解析式,求出C的度數(shù),利用正弦定理化簡sinB=2sinA,得到b=2a,利用余弦定理列出關(guān)系式,把c,b=2a,cosC的值代入即可求出a與b的值.
解答: 解:(Ⅰ)f(x)=
3
sin2x-(cos2x+1)-1=
3
sin2x-cos2x-2=2sin(2x-
π
6
)-2,
∵ω=2,-1≤sin(2x-
π
6
)≤1,
∴f(x)的最小正周期T=π;最小值為-4;
(Ⅱ)∵f(C)=2sin(2C-
π
6
)-2=0,
∴sin(2C-
π
6
)=1,
∵C∈(0,π),∴2C-
π
6
∈(-
π
6
11π
6
),
∴2C-
π
6
=
π
2
,即C=
π
3
,
將sinB=2sinA,利用正弦定理化簡得:b=2a,
由余弦定理得:c2=a2+b2-2abcosC=a2+4a2-2a2=3a2
把c=
3
代入得:a=1,b=2.
點(diǎn)評:此題考查了正弦、余弦定理,二倍角的余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2=0},B={x|x2-ax+a-1=0},C={x|x2-bx-2=0},若A∪B=A,A∩C=C,求實(shí)數(shù)a、b的值(或取值范圍).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,離心率e=
1
2
.過F1的直線交橢圓于A、B 兩點(diǎn),點(diǎn)A在x軸上方,且△ABF2的周長為8.
(1)求橢圓E 的方程;
(2)當(dāng)AF1、F1F2、AF2 成等比數(shù)列時,求直線AB的方程;
(3)設(shè)動直線l:y=kx+m與橢圓E有且只有一個公共點(diǎn)P,且與直線x=4 相交于點(diǎn)Q.試探究:在坐標(biāo)平面內(nèi)是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列各等式(i為虛數(shù)單位):
(cos1+isin1)(cos2+isin2)=cos3+isin3;
(cos3+isin3)(cos5+isin5)=cos8+isin8;
(cos4+isin4)(cos7+isin7)=cos11+isin11;
(cos6+isin6)(cos6+isin6)=cos12+isin12.
記f(x)=cosx+isinx.
(1)猜想出一個用 f(x),f(y),f(x+y)表示的反映一般規(guī)律的等式,并證明其正確性;
(2)根據(jù)(1)的結(jié)論推出f n(x)的表達(dá)式;
(3)利用上述結(jié)論計算:(cos
π
12
+isin
π
12
)•(cos
12
+isin
12
)+(
3
2
+
1
2
i)2007

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(π-α)=
4
5
,α∈(0,
π
2
).
(1)求sin2α-cos2
α
2
的值;
(2)求函數(shù)f(x)=
5
6
cosαsin2x-
1
2
cos2x的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-2|+x+m.
(1)若函數(shù)f(x)的值域是[2,+∞),試確定m的值;
(2)設(shè)函數(shù)g(x)=|x+1|,且當(dāng)x≤3時,g(x)≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求值:cos
3
+tan(-
15π
4
)+tan225°•cos240°•sin(-60°)•tan(-30°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(-1,4],f(x)=x2-2x,則函數(shù)f(x)的在[0,2014]上的零點(diǎn)個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=x+
a
x
(a>0)在區(qū)間(
5
,﹢∞)上單調(diào)遞增,則a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案