6.已知向量$\overrightarrow a$,$\overrightarrow$為兩個(gè)互相垂直的單位向量,向量$\overrightarrow c$滿足$(\overrightarrow a-\overrightarrow c)•(2\overrightarrow b-\overrightarrow c)$=0,則$|\overrightarrow c{|_{max}}$=$\sqrt{5}$.

分析 作出圖形,根據(jù)向量垂直得出$\overrightarrow{c}$的終點(diǎn)的軌跡,從而得出|$\overrightarrow{c}$|的最大模長(zhǎng).

解答 解:設(shè)$\overrightarrow{OA}=\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow$,$\overrightarrow{OC}=\overrightarrow{c}$,則OA=OB=1,
延長(zhǎng)OB到D,使得OD=2OB,則$\overrightarrow{OD}$=2$\overrightarrow$,
∴$\overrightarrow{CA}$=$\overrightarrow{a}-\overrightarrow{c}$,$\overrightarrow{CD}$=2$\overrightarrow-\overrightarrow{c}$,
∵$(\overrightarrow a-\overrightarrow c)•(2\overrightarrow b-\overrightarrow c)$=0,
∴CA⊥CD,即C在以AD為直徑的圓M上,
又OA⊥OD,
∴OC的最大值為圓M的直徑AD=$\sqrt{5}$.
故答案為:$\sqrt{5}$.

點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積與向量垂直的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,在正方體ABCD-A'B'C'D'中,E為DD'的中點(diǎn).
(Ⅰ)求證BD'∥平面AEC;
(Ⅱ)如圖,設(shè)F為上底面A'B'C'D'一點(diǎn),過(guò)點(diǎn)F在上底面畫(huà)一條直線與CF垂直,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.如圖,橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4,點(diǎn)A,B,C為橢圓上的三個(gè)點(diǎn),A為橢圓的右端點(diǎn),BC過(guò)中心O,且|BC|=2|AB|,S△ABC=3.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P,Q是橢圓上位于直線AC同側(cè)的兩個(gè)動(dòng)點(diǎn)(異于A,C),且滿足∠PBC=∠QBA,試討論直線BP與直線BQ斜率之間的關(guān)系,并求直線PQ的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.觀察如圖所示的”三角數(shù)陣”
(1)記第n(n≥2)行的第2個(gè)數(shù)為an,依次寫出a 2,a3,a4,a5,歸納出an+1 與an 的關(guān)系式.
(2)用累加法求該數(shù)列的通項(xiàng)公式an(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.求直線2x+y-6=0與直線2x+y-1=0間的距離為(  )
A.7B.5C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知圓M:(x-2a)2+y2=4a2與雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)交于A、B兩點(diǎn),點(diǎn)D為圓M與x軸正半軸的交點(diǎn),點(diǎn)E為雙曲線C的左頂點(diǎn),若四邊形EADB為菱形,則雙曲線C的離心率為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知(x+$\sqrt{2}$)10=a0+a1x+a2x2+…+a10x10,則(a0+a2+a4+a6+a8+a102-(a1+a3+a5+a7+a92的值為( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知不等式x2-3x<0的解集是A,不等式x2+x-6<0的解集是B,不等式x2+ax+b<0的解集是A∩B,那么a=( 。
A.-2B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.《九章算術(shù)》有如下問(wèn)題:有上禾三秉(古代容量單位),中禾二秉,下禾一秉,實(shí)三十九斗;上禾二秉,中禾三秉,下禾一秉,實(shí)三十四斗;上禾一秉,中禾二秉,下禾三秉,實(shí)二十六斗.問(wèn)上、中、下禾一秉各幾何?依上文:設(shè)上、中、下禾一秉分別為x斗、y斗、z斗,設(shè)計(jì)如圖所示的程序框圖,則輸出的x,y,z的值分別為(  )
A.$\frac{37}{4},\frac{17}{4},\frac{11}{4}$B.$\frac{11}{4},\frac{37}{4},\frac{17}{4}$C.$\frac{35}{4},\frac{17}{4},\frac{9}{4}$D.$\frac{35}{4},\frac{9}{4},\frac{17}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案