在三種產品,合格率分別是0.90,0.95和0.95,各抽取一件進行檢驗.
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有兩件不合格的概率.(精確到0.001)
【答案】分析:(1)要求恰有一件不合格的概率,我們根據(jù)P=P(A•B•)+P(A••C)+P(•B•C),根據(jù)已知條件,算出式中各數(shù)據(jù)量的值,代入公式即可求解.
(2)我們可以根據(jù)至少有兩件不合格的概率公式P=P(A•)+P(•B•)+P(•C)+P(),根據(jù)已知條件,算出式中各數(shù)據(jù)量的值,代入公式即可求解.也可以從對立事件出發(fā)根據(jù)(1)的結論,利用P=1-P(A•B•C)+P(A•B•)+P(A••C)+P(•B•C)進行求解.
解答:解:設三種產品各抽取一件,
抽到合格產品的事件分別為A、B和C.
(Ⅰ)P(A)=0.90,P(B)=P(C)=0.95.
P=0.10,P=P=0.05.
因為事件A,B,C相互獨立,
恰有一件不合格的概率為
P(A•B•)+P(A••C)+P(•B•C)
=P(A)•P(B)•P()+P(A)•P()•P(C)+P()•P(B)•P(C)
=2×0.90×0.95×0.05+0.10×0.95×0.95=0.176
答:恰有一件不合格的概率為0.176;
(Ⅱ)解法一:至少有兩件不合格的概率為
P(A•)+P(•B•)+P(•C)+P(
=0.90×0.052+2×0.10×0.05×0.95+0.10×0.052
=0.012.
答:至少有兩件不合格的概率為0.012.
解法二:三件產品都合格的概率為
P(A•B•C)=P(A)•P(B)•P(C)
=0.90×0.952
=0.812.
由(Ⅰ)知,恰有一件不合格的概率為0.176,
所以至少有兩件不合格的概率為
1-P(A•B•C)+0.176
=1-(0.812+0.176)
=0.012.
答:至少有兩件不合格的概率為0.012.
點評:本小題主要考查相互獨立事件概率的計算,運用數(shù)學知識解決問題的能力,要想計算一個事件的概率,首先我們要分析這個事件是分類的(分幾類)還是分步的(分幾步),然后再利用加法原理和乘法原理進行求解.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在三種產品,合格率分別是0.90,0.95和0.95,各抽取一件進行檢驗.
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有兩件不合格的概率.(精確到0.001)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三種產品,合格率分別是0.90,0.95和0.95,各抽取一件進行檢驗.

   (1)求恰有一件不合格的概率;

   (2)求至少有兩件不合格的概率.  (精確到0.001)

查看答案和解析>>

科目:高中數(shù)學 來源:天津 題型:解答題

在三種產品,合格率分別是0.90,0.95和0.95,各抽取一件進行檢驗.
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有兩件不合格的概率.(精確到0.001)

查看答案和解析>>

科目:高中數(shù)學 來源:2011年湖北省天門市高考數(shù)學模擬試卷1(文科)(解析版) 題型:解答題

在三種產品,合格率分別是0.90,0.95和0.95,各抽取一件進行檢驗.
(Ⅰ)求恰有一件不合格的概率;
(Ⅱ)求至少有兩件不合格的概率.(精確到0.001)

查看答案和解析>>

同步練習冊答案