設(shè),分別是橢圓的左、右焦點,過作傾斜角為的直線交橢圓,兩點, 到直線的距離為,連接橢圓的四個頂點得到的菱形面積為.
(1)求橢圓的方程;
(2)已知點,設(shè)是橢圓上的一點,過、兩點的直線軸于點,若, 求的取值范圍;
(3)作直線與橢圓交于不同的兩點,,其中點的坐標為,若點是線段垂直平分線上一點,且滿足,求實數(shù)的值.
(1);(2); (3)滿足條件的實數(shù)的值為.

試題分析:(1)設(shè),的坐標分別為,其中
由題意得的方程為:
根據(jù)到直線的距離為,可求得,
聯(lián)立即可得到.
(2)設(shè),,由可得,代人橢圓的方程得,即可解得.
(3)由, 設(shè),根據(jù)題意可知直線的斜率存在,可設(shè)直線斜率為,則直線的方程為,代入橢圓的方程,整理得:
由韋達定理得,則,
得到線段的中點坐標為.注意討論,的情況,確定的表達式,求得實數(shù)的值.
方法比較明確,運算繁瑣些;分類討論是易錯之處.
試題解析:(1)設(shè),的坐標分別為,其中
由題意得的方程為:
到直線的距離為,所以有,解得     2分
所以有 ①
由題意知: ,即 ②
聯(lián)立①②解得:
所求橢圓的方程為     4分
(2)由(1)知橢圓的方程為 
設(shè),,由于,所以有
      7分
是橢圓上的一點,則
所以
解得:                  9分
(3)由, 設(shè)
根據(jù)題意可知直線的斜率存在,可設(shè)直線斜率為,則直線的方程為
把它代入橢圓的方程,消去,整理得:
由韋達定理得,則,
所以線段的中點坐標為
(1)當時, 則有,線段垂直平分線為
于是
,解得:      11分
(2) 當時, 則線段垂直平分線的方程為
因為點是線段垂直平分線的一點
,得:
于是
,解得:
代入,解得:
綜上, 滿足條件的實數(shù)的值為.       14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,圓與直線相切于點,與正半軸交于點,與直線在第一象限的交點為.點為圓上任一點,且滿足,動點的軌跡記為曲線

(1)求圓的方程及曲線的方程;
(2)若兩條直線分別交曲線于點、,求四邊形面積的最大值,并求此時的的值.
(3)證明:曲線為橢圓,并求橢圓的焦點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0)的離心率為,以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+=0相切,過點P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點.
(1)求橢圓C的方程;
(2)求·的取值范圍;
(3)若B點關(guān)于x軸的對稱點是E,證明:直線AE與x軸相交于定點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓的圓心在坐標原點O,且恰好與直線相切.
(1)求圓的標準方程;
(2)設(shè)點A為圓上一動點,AN軸于N,若動點Q滿足(其中m為非零常數(shù)),試求動點的軌跡方程.
(3)在(2)的結(jié)論下,當時,得到動點Q的軌跡曲線C,與垂直的直線與曲線C交于 B、D兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知平面五邊形關(guān)于直線對稱(如圖(1)),,將此圖形沿折疊成直二面角,連接、得到幾何體(如圖(2))

(1)證明:平面;
(2)求平面與平面的所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知、為橢圓的左右焦點,點為其上一點,且有
.
(1)求橢圓的標準方程;
(2)過的直線與橢圓交于、兩點,過平行的直線與橢圓交于、兩點,求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線C頂點為原點,其焦點F(0,c)(c>0)到直線l:x-y-2=0的距離為,設(shè)P為直線l上的點,過點P作拋物線C的兩條切線PA,PB,其中A,B為切點.
(1)求拋物線C的方程;
(2)當點P(x0,y0)為直線l上的定點時,求直線AB的方程;
(3)當點P在直線l上移動時,求|AF|·|BF|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓M=1(ab>0)的短半軸長b=1,且橢圓上一點與橢圓的兩個焦點構(gòu)成的三角形的周長為6+4.
(1)求橢圓M的方程;
(2)設(shè)直線lxmyt與橢圓M交于A,B兩點,若以AB為直徑的圓經(jīng)過橢圓的右頂點C,求t的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C=1(ab>0)的離心率為,其左、右焦點分別是F1、F2,過點F1的直線l交橢圓CEG兩點,且△EGF2的周長為4.
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C相交于兩點A、B,設(shè)P為橢圓上一點,且滿足t (O為坐標原點),當||<時,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案