在△OAB的邊OA、OB上分別取點(diǎn)M、N,使||∶||=1∶3,||∶||=1∶4,設(shè)線段AN與BM交于點(diǎn)P,記= ,=,用 ,表示向量


解析:

:∵ B、P、M共線∴ 記=s

  ①

同理,記=   ②∵ ,不共線

∴ 由①②得解之得:

說明:從點(diǎn)共線轉(zhuǎn)化為向量共線,進(jìn)而引入?yún)?shù)(如s,t)是常用技巧之一。平面向量基本定理是向量重要定理之一,利用該定理唯一性的性質(zhì)得到關(guān)于s,t的方程。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△OAB的邊OA、OB上分別有一點(diǎn)P、Q,已知|
OP
|
|
PA
|
=1:2,|
OQ
|
|
QB
|
=3:2,連接AQ、BP,設(shè)它們交于點(diǎn)R,若
OA
=
a
,
OB
=
b

(Ⅰ)用
a
b
表示
OR

(Ⅱ)過R作RH⊥AB,垂足為H,若|
a
|=1,|
b
|=2,
a
b
的夾角θ∈[
π
3
,
3
]
,求
|
BH|
|
BA|
的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

在△OAB的邊OA,OB上分別有一點(diǎn)P,Q,已知:=1:2, :=3:2,連結(jié)AQ,BP,設(shè)它們交于點(diǎn)R,若a,b.

   (1)用a b表示

   (2)過RRHAB,垂足為H,若| a|=1, | b|=2, a b的夾角的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)在△OAB的邊OA、OB上分別有一點(diǎn)PQ,已知:=1:2, :=3:2,連結(jié)AQ、BP,設(shè)它們交于點(diǎn)R,若a,b.   (Ⅰ)用a b表示

   (Ⅱ)過RRHAB,垂足為H,若| a|=1, | b|=2, a b的夾角的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在△OAB的邊OA、OB上分別有一點(diǎn)P、Q,已知|
OP
|
|
PA
|
=1:2,|
OQ
|
|
QB
|
=3:2,連接AQ、BP,設(shè)它們交于點(diǎn)R,若
OA
=
a
,
OB
=
b

(Ⅰ)用
a
b
表示
OR
;
(Ⅱ)過R作RH⊥AB,垂足為H,若|
a
|=1,|
b
|=2,
a
b
的夾角θ∈[
π
3
,
3
]
,求
|
BH|
|
BA|
的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案