已知,函數(shù)
(1)若函數(shù)在區(qū)間內(nèi)是減函數(shù),求實數(shù)的取值范圍;
(2)求函數(shù)在區(qū)間上的最小值;
(1)(2)

試題分析:解:(1)∵,令,
時,遞減,不合舍去
時,遞減,
(2)∵,令
①若,則當時,,所以在區(qū)間上是增函數(shù),
所以.    
②若,即,則當時,,所以在區(qū)間上是增函數(shù),所以. 
③若,即,則當時,;當時,.所以在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù).
所以.   
④若,即,則當時,,
所以在區(qū)間上是減函數(shù).所以
綜上所述,函數(shù)在區(qū)間的最小值:
點評:導(dǎo)數(shù)常應(yīng)用于求曲線的切線方程、求函數(shù)的最值與單調(diào)區(qū)間、證明不等式和解不等式中參數(shù)的取值范圍等。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的解析式為         (   )
A.3B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,則的表達式是      ___    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若f(x)是偶函數(shù),g(x)是奇函數(shù),且,求f(x)和g(x)的解析式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax3+bx2-x(x∈R,a、b是常數(shù),a≠0),且當x=1和x=2時,函數(shù)f(x)取得極值.(I)求函數(shù)f(x)的解析式;
(Ⅱ)若曲線y=f(x)與g(x)=有兩個不同的交點,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)滿足f(x)f(x+2)=13,若f(3)=2,則f(2013)=                (    )
A.13B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的零點的個數(shù)為     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù) ,則的值為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

滿足對于時有恒成立,則稱函數(shù)上是“被k限制”,若函數(shù)在區(qū)間上是“被2限制”的,則的取值范圍為            .

查看答案和解析>>

同步練習(xí)冊答案