【題目】已知點(diǎn),圓:,點(diǎn)是圓上一動點(diǎn),線段的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡的方程;
(2)曲線與軸交于點(diǎn),,直線過點(diǎn)且垂直于軸,點(diǎn)在直線上,點(diǎn)在曲線上,若,試判斷直線與曲線的交點(diǎn)的個數(shù).
【答案】(1).
(2)與曲線只有一個交點(diǎn).
【解析】分析: (1)利用待定系數(shù)法求點(diǎn)P的軌跡E的方程.(2)先求直線的方程為 ,再聯(lián)立橢圓,求得△=0得與曲線只有一個交點(diǎn).
詳解:(1)連接,由題知,
所以,即點(diǎn)的軌跡是以,為焦點(diǎn)的橢圓,
因此,,所以,
所以點(diǎn)的軌跡的方程為.
(2)不妨設(shè),,則直線:,
設(shè),則,所以,
因此直線:.
設(shè),聯(lián)立直線與橢圓的方程可得,
因此,所以,
所以,
所以直線的方程為,即,
其中,,
聯(lián)立直線:與橢圓,得,
所以 ,
所以與曲線只有一個交點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著我國互聯(lián)網(wǎng)信息技術(shù)的發(fā)展,網(wǎng)絡(luò)購物已經(jīng)成為許多人消費(fèi)的一種重要方式,某市為了了解本市市民的網(wǎng)絡(luò)購物情況,特委托一家網(wǎng)絡(luò)公示進(jìn)行了網(wǎng)絡(luò)問卷調(diào)查,并從參與調(diào)查的10000名網(wǎng)民中隨機(jī)抽取了200人進(jìn)行抽樣分析,得到了下表所示數(shù)據(jù):
經(jīng)常進(jìn)行網(wǎng)絡(luò)購物 | 偶爾或從不進(jìn)行網(wǎng)絡(luò)購物 | 合計(jì) | |
男性 | 50 | 50 | 100 |
女性 | 60 | 40 | 100 |
合計(jì) | 110 | 90 | 200 |
(1)依據(jù)上述數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認(rèn)為該市市民進(jìn)行網(wǎng)絡(luò)購物的情況與性別有關(guān)?
(2)現(xiàn)從所抽取的女性網(wǎng)民中利用分層抽樣的方法再抽取人,從這人中隨機(jī)選出人贈送網(wǎng)絡(luò)優(yōu)惠券,求出選出的人中至少有兩人是經(jīng)常進(jìn)行網(wǎng)絡(luò)購物的概率;
(3)將頻率視為概率,從該市所有的參與調(diào)查的網(wǎng)民中隨機(jī)抽取人贈送禮物,記經(jīng)常進(jìn)行網(wǎng)絡(luò)購物的人數(shù)為,求的期望和方差.
附:,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為2的正方體中, , , , 分別是棱, , , 的中點(diǎn),點(diǎn), 分別在棱, 上移動,且.
(1)當(dāng)時,證明:直線平面;
(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列,其中的公差不為0.設(shè)是數(shù)列的前n項(xiàng)和.若,,是數(shù)列的前3項(xiàng),且.
(1)求數(shù)列和的通項(xiàng)公式;
(2)若數(shù)列為等差數(shù)列,求實(shí)數(shù)t;
(3)構(gòu)造數(shù)列,,,,,,,,,…,,,,…,,….若該數(shù)列前n項(xiàng)和,求n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在區(qū)間上有最小值1,最大值9.
(1)求實(shí)數(shù)a,b的值;
(2)設(shè),若不等式在區(qū)間上恒成立,求實(shí)數(shù)k的取值范圍;
(3)設(shè)),若函數(shù)有三個零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)?/span>(-2,2),函數(shù)g(x)=f(x-1)+f(3-2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù),且在定義域上單調(diào)遞減,求不等式g(x)≤0的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)且是定義域?yàn)?/span>R的奇函數(shù).
求k值;
若,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;
若,且在上的最小值為,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)在定義域內(nèi)存在實(shí)數(shù),使得成立,則稱函數(shù)有“飄移點(diǎn)”.
Ⅰ試判斷函數(shù)及函數(shù)是否有“飄移點(diǎn)”并說明理由;
Ⅱ若函數(shù)有“飄移點(diǎn)”,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com