【題目】某校高三年級(jí)舉行了一次全年級(jí)的大型考試,在數(shù)學(xué)成績(jī)優(yōu)秀和非優(yōu)秀的學(xué)生中,物理、化學(xué)、總分成績(jī)也為優(yōu)秀的人數(shù)如下表所示,則我們能以99%的把握認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與物理、化學(xué)、總分成績(jī)優(yōu)秀有關(guān)系嗎?
物理優(yōu)秀 | 化學(xué)優(yōu)秀 | 總分優(yōu)秀 | |
數(shù)學(xué)優(yōu)秀 | 228 | 225 | 267 |
數(shù)學(xué)非優(yōu)秀 | 143 | 156 | 99 |
注:該年級(jí)此次考試中數(shù)學(xué)成績(jī)優(yōu)秀的有360人,非優(yōu)秀的有880人.
【答案】見(jiàn)解析
【解析】分析:利用獨(dú)立性檢驗(yàn)分別計(jì)算,再判斷我們是否能以99%的把握認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與物理、化學(xué)、總分成績(jī)優(yōu)秀有關(guān)系.
詳解:(1)根據(jù)已知數(shù)據(jù)列出數(shù)學(xué)與物理成績(jī)的2×2列聯(lián)表如下表所示:
物理優(yōu)秀 | 物理非優(yōu)秀 | 合計(jì) | |
數(shù)學(xué)優(yōu)秀 | 228 | b | 360 |
數(shù)學(xué)非優(yōu)秀 | 143 | d | 880 |
合計(jì) | 371 | b+d | 1 240 |
則b=360-228=132,d=880-143=737,b+d=132+737=869.代入公式可得
270.114.
(2)按照上述方法列出數(shù)學(xué)與化學(xué)成績(jī)的2×2列聯(lián)表如下表所示:
化學(xué)優(yōu)秀 | 化學(xué)非優(yōu)秀 | 合計(jì) | |
數(shù)學(xué)優(yōu)秀 | 225 | 135 | 360 |
數(shù)學(xué)非優(yōu)秀 | 156 | 724 | 880 |
合計(jì) | 381 | 859 | 1 240 |
代入公式可得
240.611.
(3)列出數(shù)學(xué)與總分成績(jī)的2×2列聯(lián)表如下表所示:
總分優(yōu)秀 | 總分非優(yōu)秀 | 合計(jì) | |
數(shù)學(xué)優(yōu)秀 | 267 | 93 | 360 |
數(shù)學(xué)非優(yōu)秀 | 99 | 781 | 880 |
合計(jì) | 366 | 874 | 1 240 |
代入公式可得486.123.
由于計(jì)算出的χ2的觀測(cè)值都大于6.635,因此說(shuō)明有99%的把握認(rèn)為數(shù)學(xué)成績(jī)優(yōu)秀與物理、化學(xué)、總分成績(jī)優(yōu)秀有關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C1: +y2=1,橢圓C2以C1的長(zhǎng)軸為短軸,且與C1有相同的離心率.
(1)求橢圓C2的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓C1和C2上, =2 ,求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對(duì)他們的射箭水平進(jìn)行測(cè)試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績(jī),然后決定選擇哪名學(xué)生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖中的幾何體是由兩個(gè)有共同底面的圓錐組成.已知兩個(gè)圓錐的頂點(diǎn)分別為P、Q,高分別為2、1,底面半徑為1.A為底面圓周上的定點(diǎn),B為底面圓周上的動(dòng)點(diǎn)(不與A重合).下列四個(gè)結(jié)論:
①三棱錐體積的最大值為;
②直線PB與平面PAQ所成角的最大值為;
③當(dāng)直線BQ與AP所成角最小時(shí),其正弦值為;
④直線BQ與AP所成角的最大值為;
其中正確的結(jié)論有___________.(寫(xiě)出所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】三棱柱ABC﹣A1B1C1中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都相等,∠BAA1=∠CAA1=60°,則異面直線AB1與BC1所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,定義域?yàn)?/span>上的函數(shù)是由一條射線及拋物線的一部分組成.利用該圖提供的信息解決下面幾個(gè)問(wèn)題.
(1)求的解析式;
(2)若關(guān)于的方程有三個(gè)不同解,求的取值范圍;
(3)若,求的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù). 為實(shí)數(shù),且,記由所有組成的數(shù)集為.
(1)已知,求;
(2)對(duì)任意的,恒成立,求的取值范圍;
(3)若,,判斷數(shù)集中是否存在最大的項(xiàng)?若存在,求出最大項(xiàng);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三點(diǎn)O(0,0),A(﹣2,1),B(2,1),曲線C上任意一點(diǎn)M(x,y)滿足| + |= ( + )+2.
(1)求曲線C的方程;
(2)動(dòng)點(diǎn)Q(x0 , y0)(﹣2<x0<2)在曲線C上,曲線C在點(diǎn)Q處的切線為直線l:是否存在定點(diǎn)P(0,t)(t<0),使得l與PA,PB都相交,交點(diǎn)分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com