已知函數(shù)f(x)為定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=log2(x+1)
(1)當(dāng)x<0時(shí),求f(x)的解析式;
(2)作出函數(shù)f(x)的圖象,并指出其單調(diào)區(qū)間,以及在每一個(gè)單調(diào)區(qū)間上,它是增函數(shù)還是減函數(shù),并指出f(x)的值域.(不要求證明)
【答案】分析:(1)當(dāng)x<0時(shí),-x>0,由x≥0時(shí),f(x)=log2(x+1)可求f(-x),由f(-x)=f(x)可求f(x)
(2)根據(jù)函數(shù)的圖象平移可先作出f(x)=log2(x+1)的圖象然后由偶函數(shù)的圖象關(guān)于y軸對(duì)稱即可
解答:解:(1)當(dāng)x<0時(shí),-x>0,
∵f(x)是偶函數(shù),
∴f(-x)=f(x)
∴f(x)=f(-x)=log2(-x+1)(x<0)…(5分)
(2)圖象如圖所示                            …(9分)
由圖知,單增區(qū)間(0,+∞);單減區(qū)間(-∞,0);值域[0,+∞)…(12分)
點(diǎn)評(píng):本題主要考查了利用偶函數(shù)的性質(zhì)求解函數(shù)解析式,函數(shù)圖象的作法,屬于基礎(chǔ)試題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-x,其圖象記為曲線C.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其在點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1,S2,則
S1S2
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1+ln
x
2-x
(0<x<2).
(1)試問(wèn)f(x)+f(2-x)的值是否為定值?若是,求出該定值;若不是請(qǐng),說(shuō)明理由;
(2)定義Sn=
2n-1
i=1
f(
i
n
)=f(
1
n
)+f(
2
n
)+…+
f(
2n-1
n
)
,其中n∈N*,求S2013
(3)在(2)的條件下,令Sn+1=2an,若不等式2an(an)m>1對(duì)?n∈N*且n≥2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=1-|2x-a|,a∈R.
(I)當(dāng)a=5時(shí),求不等式f(x)≥3x-2的解集.
(II)求證:函數(shù)f(x)=1-|2x-a|的最大值恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x+
ax
的定義域?yàn)椋?,+∞),a>0且當(dāng)x=1時(shí)取得最小值,設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值;
(2)問(wèn):PM•PN是否為定值?若是,則求出該定值,若不是,請(qǐng)說(shuō)明理由;
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案