【題目】某電影院共有1000個(gè)座位,票價(jià)不分等次,根據(jù)影院的經(jīng)營(yíng)經(jīng)驗(yàn),當(dāng)每張票價(jià)不超過(guò)10元時(shí),票可全售出;當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院定一個(gè)合適的票價(jià),需符合的基本條件是:①為了方便找零和算賬,票價(jià)定為1元的整數(shù)倍;②電影院放一場(chǎng)電影的成本費(fèi)用支出為5750元,票房的收入必須高于成本支出,用x(元)表示每張票價(jià),用y(元)表示該影院放映一場(chǎng)的凈收入(除去成本費(fèi)用支出后的收入)
問(wèn):
(1)把y表示為x的函數(shù),并求其定義域;
(2)試問(wèn)在符合基本條件的前提下,票價(jià)定為多少時(shí),放映一場(chǎng)的凈收人最多?
【答案】(1)(2)當(dāng)每張票定為22元時(shí),放映一場(chǎng)電影的利潤(rùn)最高,最高為8330元.
【解析】
試題分析:(1)因?yàn)?/span>影院放映一場(chǎng)電影的成本費(fèi)用為5750元,所以票房收入必須高于成本費(fèi)用,所以一張電影票的價(jià)格大于,所以一張電影票的最低價(jià)格為6元 ,當(dāng)時(shí),票可全售出,y=1000x-5750.當(dāng)每張票價(jià)高于10元時(shí),每提高1元,將有30張票不能售出,所以y=x[1000-30(x-10)]-5750=-30x2+1300x-5750,因?yàn)?/span>,所以,
又∵x為大于10的整數(shù),∴10<x≤38.(2)求分段函數(shù)兩段的最大值,大的即為凈收人最大值。
試題解析:(1)∵影院放映一場(chǎng)電影的成本費(fèi)用為5750元,票房收入必須高于成本費(fèi)用,∴票房收入大于5750元,
∵該影院共有l(wèi)000個(gè)座位,∴一張電影票的價(jià)格大于5.75元,
又∵票價(jià)為l元的整數(shù)倍,∴該院一張電影票的最低價(jià)格為6元
∵,∴,
又∵x為大于10的整數(shù),∴10<x≤38.
∴;
(2)當(dāng)票價(jià)不超過(guò)10元時(shí):y=1000x-5750,∵1000>0,
∴隨的增大而增大,∴當(dāng)時(shí),的值最大,
此時(shí)(元);
當(dāng)票價(jià)高于10元時(shí),y=-30x2+1300x-5750,
∴當(dāng)時(shí),的值最大,
此時(shí)(元).
綜上可知,當(dāng)每張票定為22元時(shí),放映一場(chǎng)電影的利潤(rùn)最高,最高為8330元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在五面體中,底面為矩形,,,過(guò)的平面交棱于,交棱于.
(1)證明:平面;
(2)若,求平面與平面所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓的左焦點(diǎn)為,過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn),的最大值為,的最小值為,滿(mǎn)足.
(1)若線段垂直于軸時(shí),,求橢圓的方程;
(2)設(shè)線段的中點(diǎn)為,的垂直平分線與軸和軸分別交于,兩點(diǎn),是坐標(biāo)原點(diǎn),記的面積為,的面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),下列命題:
①為偶函數(shù);②的最大值為2;
③在內(nèi)的零點(diǎn)個(gè)數(shù)為18;
④的任何一個(gè)極大值都大于1.
其中所有正確命題的序號(hào)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè){an}和{bn}是兩個(gè)等差數(shù)列,記cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs這s個(gè)數(shù)中最大的數(shù).
(Ⅰ)若an=n,bn=2n-1,求c1,c2,c3的值,并證明{cn}是等差數(shù)列;
(Ⅱ)證明:或者對(duì)任意正數(shù)M,存在正整數(shù)m,當(dāng)n≥m時(shí), >M;或者存在正整數(shù)m,使得cm,cm+1,cm+2,…是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)若直線與橢圓交于兩點(diǎn),直線分別與軸交于點(diǎn),在軸上,是否存在點(diǎn),使得無(wú)論非零實(shí)數(shù)怎樣變化,總有為直角?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)為圓上一動(dòng)點(diǎn),軸于點(diǎn),記線段的中點(diǎn)的運(yùn)動(dòng)軌跡為曲線.
(1)求曲線的方程;
(2)直線經(jīng)過(guò)定點(diǎn),且與曲線交于兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,,,是同一平面內(nèi)的三條平行直線, 與之間的距離是1,與之間的距離是2,三角形的三個(gè)頂點(diǎn)分別在,,上.
(1)若為正三角形,求其邊長(zhǎng);
(2)若是以B為直角頂點(diǎn)的直角三角形,求其面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)完成表一中對(duì)應(yīng)的值,并在坐標(biāo)系中用描點(diǎn)法作出函數(shù)的圖象:(表一)
0.25 | 0.5 | 0.75 | 1 | 1.25 | 1.5 | |
0.08 | 1.82 | 2.58 |
(2)根據(jù)你所作圖象判斷函數(shù)的單調(diào)性,并用定義證明;
(3)說(shuō)明方程的根在區(qū)間存在的理由,并從表二中求使方程的根的近似值達(dá)到精確度為0.01時(shí)運(yùn)算次數(shù)的最小值并求此時(shí)方程的根的近似值,且說(shuō)明理由.
(表二)二分法的結(jié)果
運(yùn)算次數(shù)的值 | 左端點(diǎn) | 右端點(diǎn) | ||
-0.537 | 0.6 | 0.75 | 0.08 | |
-0.217 | 0.675 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.75 | 0.08 | |
-0.064 | 0.7125 | 0.73125 | 0.011 | |
-0.03 | 0.721875 | 0.73125 | 0.011 | |
-0.01 | 0.7265625 | 0.73125 | 0.011 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com