20.已知p是r的充分條件,而r是q的必要條件,同時(shí)又是s的充分條件,q是s的必要條件,試判斷:
(1)s是p的什么條件?
(2)p是q的什么條件?

分析 根據(jù)充分條件和必要條件的定義和關(guān)系進(jìn)行推理即可.

解答 解:(1):∵p是r的充分條件,而r是q的必要條件,同時(shí)又是s的充分條件,q是s的必要條件,
∴p⇒r,q⇒r,r⇒s,s⇒q,
∴r?s,
∴p⇒s,
∴s是p的必要條件;
(2)∵r是q的必要條件,同時(shí)也是s的充分條件,q是s的必要條件,
∴r是q的充要條件,同時(shí)也是s的充要條件,
∵p是r的充分條件,
∴p是q的充分條件.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是充要條件的定義,正確理解并熟練掌握充要條件的定義,是解答的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)i為虛數(shù)單位,復(fù)數(shù)z滿足|z|-$\overline{z}$=2+4i($\overline{z}$為z的共軛復(fù)數(shù)),則z=3+4i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知拋物線的參數(shù)方程是$\left\{{\begin{array}{l}{x=2t}\\{y=2{t^2}}\end{array}}\right.$(t為參數(shù)),則其普通方程為(  )
A.y2=2xB.x2=2yC.x2=yD.y2=x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC的中點(diǎn),PO⊥平面ABCD,PO=1,M為PD的中點(diǎn).
(1)證明:PB∥平面ACM;
(2)設(shè)直線AM與平面ABCD所成的角為α,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)$f(x)=\sqrt{2}sin(\frac{x}{2}+\frac{π}{4})+1$
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)若x∈[0,2π],求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}中,a1=2,an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*).設(shè)bn=$\frac{1}{{a}_{n}-1}$(n∈N*),求證:數(shù)列{bn}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知二次函數(shù)f(x)=ax2+bx+c圖象的對(duì)稱軸方程為x=2,且經(jīng)過(guò)點(diǎn)(1,4)和點(diǎn)(5,0),則f(x)的解析式為f(x)=-$\frac{1}{2}$x2+2x+$\frac{5}{2}$,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=log2(2x+1)-$\frac{1}{2}$x.
(Ⅰ)求證:函數(shù)f(x)是偶函數(shù).
(Ⅱ)求證:對(duì)x∈R,f(x)≥1恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知$S=C_{27}^1+C_{27}^2+C_{27}^3+…+C_{27}^{27}$,則S除以9所得的余數(shù)是7.

查看答案和解析>>

同步練習(xí)冊(cè)答案