數(shù)列的各項均為正數(shù),為其前項和,對于任意的,總有成等差數(shù)列.
(1)求;
(2)求數(shù)列的通項公式;
(3)設(shè)數(shù)列的前項和為,且,求證:對任意正整數(shù),總有
(1)1;(2);(3)求出.
【解析】
試題分析:本題考查計算能力和數(shù)學(xué)轉(zhuǎn)化思想.(1)由成等差數(shù)列,列出式子,代入可求;(2)由前n項和公式,可將轉(zhuǎn)化為,即,可求得;(3)用裂項相消法求出前n項和.
試題解析:(1)由已知:對于任意的,總有成等差數(shù)列,
令, 即
又因為數(shù)列的各項均為正數(shù),所以
(2) ①
②
由①-②得:
即即
均為正數(shù)
∴數(shù)列是公差為1的等差數(shù)列
(3)
當(dāng)時,
當(dāng)時,
所以對任意正整數(shù),總有.
考點:(1)數(shù)列前n項和與通項公式之間的關(guān)系;(2)等差數(shù)列的通項公式;(3)裂項相消法在數(shù)列求和中的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:
若實數(shù)列的前n項和為,則下列命題:
(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;
(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項均為正數(shù);
(3)若是等比數(shù)列,則的充要條件是
其中,正確命題的個數(shù)是 ( )
A.0個 B.1個 C.2個 D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省宿州市高三上學(xué)期期末考試理科數(shù)學(xué)試卷(解析版) 題型:解答題
設(shè)數(shù)列的各項均為正數(shù),其前n項的和為,對于任意正整數(shù)m,n, 恒成立.
(Ⅰ)若=1,求及數(shù)列的通項公式;
(Ⅱ)若,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省雙流市外語學(xué)校高三9月月考理科數(shù)學(xué)試卷(解析版) 題型:選擇題
若數(shù)列的前n項和為,則下列命題:
(1)若數(shù)列是遞增數(shù)列,則數(shù)列也是遞增數(shù)列;
(2)數(shù)列是遞增數(shù)列的充要條件是數(shù)列的各項均為正數(shù);
(3)若是等差數(shù)列(公差),則的充要條件是
(4)若是等比數(shù)列,則的充要條件是
其中,正確命題的個數(shù)是( )
A.0個 B.1個 C.2個 D.3個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三下學(xué)期2月聯(lián)考理科數(shù)學(xué) 題型:選擇題
數(shù)列的各項均為正數(shù),為其前項和,對于任意,總有 成等差數(shù)列。設(shè)數(shù)列的前項和為,且,則對任意實數(shù)(是常數(shù),)和任意正整數(shù),小于的最小正整數(shù)為( ▲ )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期11月月考文科數(shù)學(xué)卷 題型:選擇題
數(shù)列的各項均為正數(shù),為其前n項和,對于任意的,總有成等差數(shù)列,又記,數(shù)列的前n項和Tn=( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com