函數(shù)f(x+1)=x2-2x+1的定義域是[-2,0],則f(x)的單調(diào)遞減區(qū)間是____.

 

【答案】

[-1,1].

【解析】主要考查函數(shù)單調(diào)性的概念及二次函數(shù)單調(diào)性判定方法。

解:令t=x+1,∵-2≤x≤0,∴-1≤t≤1,∴f(t)=(t-1)2-2(t-1)+1=t2-4t+4,即f(x)=x2-4x+4=(x-2)2在區(qū)間[-1,1]上是減函數(shù).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:重慶西南師大附中2011屆高三第一次月考理科數(shù)學(xué)試題 題型:044

定義在R上的函數(shù)f(x)滿足:對(duì)任意實(shí)數(shù)m,n,總有f(m+n)=f(m)·f(n),且當(dāng)x>0時(shí),0<f(x)<1.

(1)試求f(0)的值;

(2)判斷f(x)的單調(diào)性并證明你的結(jié)論;

(3)若不等式f[(t-2)(|x-4|-|x+4|)]>f(t2-4t+13)對(duì)t∈[4,6]恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:山東省濰坊市三縣2012屆高三上學(xué)期12月聯(lián)考數(shù)學(xué)理科試題 題型:044

已知a>0,函數(shù)f(x)=ln(2-x)+ax.

(1)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線為l,若l截圓(x+1)2+y2=2的弦長(zhǎng)為2,求a;

(2)求函數(shù)f(x)的單調(diào)區(qū)間;

(3)求函數(shù)f(x)在[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=,則函數(shù)f[f(x)]的定義域?yàn)? )

A.{x|x≠1}      B.{x|x≠2}

C.{x|x≠1或x≠2}   D.{x|x≠1且x≠2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=,則函數(shù)f[f(x)]的定義域?yàn)? )

A.{x|x≠1}      B.{x|x≠2}

C.{x|x≠1或x≠2}   D.{x|x≠1且x≠2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=cos(2x+)+sinx·cosx

⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一問(wèn)中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二問(wèn)中,∵xÎ[0, ],∴2x-Î[-,],

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,

當(dāng)2x-, 即x=時(shí),f(x)max=1

第三問(wèn)中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用構(gòu)造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,        ……………………8分

當(dāng)2x-, 即x=時(shí),f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

查看答案和解析>>

同步練習(xí)冊(cè)答案