20.已知A${\;}_{10}^{m}$=10×9×8,那么m=3.

分析 利用排列數(shù)的計算公式即可得出.

解答 解:∵${A}_{10}^{3}$=10×9×8=A${\;}_{10}^{m}$,∴m=3.
故答案為:3.

點評 本題考查了排列數(shù)的計算公式,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(ω>0,0<φ<π),對于任意x∈R滿足f(-x)=f(x),且相鄰兩條對稱軸間的距離為$\frac{π}{2}$.
(Ⅰ)求y=f(x)的解析式;
(Ⅱ)求函數(shù)$y=f(x)+f({x+\frac{π}{4}})$的單調減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在三棱柱ABC-A1B1C1中,平面BCC1B1⊥平面ABC,四邊形BCC1B1為菱形,點M是棱AC上不同于A,C的點,平面B1BM與棱A1C1交于點N,AB=BC=2,∠ABC=90°,∠BB1C1=60°.
(Ⅰ)求證:B1N∥平面C1BM;
(Ⅱ)求證:B1C⊥平面ABC1;
(Ⅲ)若二面角A-BC1-M為30°,求AM的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.如圖,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠ACB=90°,AC=1,AA1=BC=2,點D在側棱AA1上.
(1)若D為AA1的中點,求證:C1D⊥平面BCD;
(2)若A1D=$\sqrt{2}$,求二面角B-C1D-C的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.閱讀如圖所示的程序框圖,若輸出的數(shù)據(jù)為58,則判斷框中應填入的條件為k≤4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.為了了解某校學生一學期內的課外閱讀情況,現(xiàn)隨機統(tǒng)計了n名學生的課外閱讀時間,所得樣本數(shù)據(jù)都在[50,150]內(單位:小時),其頻率分布直方圖如圖所示,若該樣本在[125,150]內的頻數(shù)為100,則n的值為500.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在區(qū)間[1,5]上任取一個數(shù)記為m,在區(qū)間[1,4]上任取一個數(shù)記為n.
(1)若m,n∈N*,求方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦點在x軸上的橢圓的概率;
(2)若m,n∈R,求方程$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{n}$=1表示焦點在x軸上的橢圓的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.拋物線y2=2px的準線經過點(-2,2),則該拋物線的焦點坐標為( 。
A.(-2,0)B.(2,0)C.(0,-1)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)令cn=$\frac{{({a}_{n}+1)}^{(n+1)}}{6{(_{n}+2)}^{n}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案